Daniela F. Soto, Camilo Muñoz, Pirjo Huovinen, José Garcés-Vargas, Iván Gómez
{"title":"Bacterial communities on giant kelp in the Magellan Strait: Geographical and intra-thallus patterns","authors":"Daniela F. Soto, Camilo Muñoz, Pirjo Huovinen, José Garcés-Vargas, Iván Gómez","doi":"10.1111/1462-2920.70003","DOIUrl":null,"url":null,"abstract":"The giant kelp <i>Macrocystis pyrifera</i> is categorized as a keystone species, forming highly productive forests that provide ecosystem services and host a remarkable marine biodiversity of macro and microorganisms. The association of microorganisms with the algae is close and can be functionally interdependent. The Magellan Strait, a natural marine passage between the Atlantic and Pacific oceans, harbours extensive giant kelp forests. However, information related to the diversity of bacterial communities in this region is still scarce. In this study, 16S rRNA gene metabarcoding was used to characterize the diversity and composition of bacterial communities associated with apical blades and sporophylls of <i>M. pyrifera</i> from different sites (Bahía Buzo, San Gregorio, and Buque Quemado). Additionally, data from satellites and reanalysis, as well as tide data, were used to characterize the environmental variability. The findings revealed discernible local variations in bacterial taxa across sampling sites, with consistent dominance of Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes. Furthermore, a distinctive bacterial community structure was identified between apical and sporophyll blades of <i>M. pyrifera</i>. This research marks the inaugural characterization of bacterial community diversity and composition associated with <i>M. pyrifera</i> in the remote and understudied sub-Antarctic region of the Magellan Strait.","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1462-2920.70003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The giant kelp Macrocystis pyrifera is categorized as a keystone species, forming highly productive forests that provide ecosystem services and host a remarkable marine biodiversity of macro and microorganisms. The association of microorganisms with the algae is close and can be functionally interdependent. The Magellan Strait, a natural marine passage between the Atlantic and Pacific oceans, harbours extensive giant kelp forests. However, information related to the diversity of bacterial communities in this region is still scarce. In this study, 16S rRNA gene metabarcoding was used to characterize the diversity and composition of bacterial communities associated with apical blades and sporophylls of M. pyrifera from different sites (Bahía Buzo, San Gregorio, and Buque Quemado). Additionally, data from satellites and reanalysis, as well as tide data, were used to characterize the environmental variability. The findings revealed discernible local variations in bacterial taxa across sampling sites, with consistent dominance of Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes. Furthermore, a distinctive bacterial community structure was identified between apical and sporophyll blades of M. pyrifera. This research marks the inaugural characterization of bacterial community diversity and composition associated with M. pyrifera in the remote and understudied sub-Antarctic region of the Magellan Strait.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens