Phosphorylated Covalent Organic Framework Membranes Toward Ultrafast Single Lithium-Ion Transport

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2024-11-12 DOI:10.1002/adma.202413022
Xiao Pang, Benbing Shi, Yawei Liu, Yunliang Li, Yafang Zhang, Tiantian Wang, Shuting Xu, Xiaoyao Wang, Ziwen Liu, Na Xing, Xu Liang, Ziting Zhu, Chunyang Fan, Ying Liu, Hong Wu, Zhongyi Jiang
{"title":"Phosphorylated Covalent Organic Framework Membranes Toward Ultrafast Single Lithium-Ion Transport","authors":"Xiao Pang, Benbing Shi, Yawei Liu, Yunliang Li, Yafang Zhang, Tiantian Wang, Shuting Xu, Xiaoyao Wang, Ziwen Liu, Na Xing, Xu Liang, Ziting Zhu, Chunyang Fan, Ying Liu, Hong Wu, Zhongyi Jiang","doi":"10.1002/adma.202413022","DOIUrl":null,"url":null,"abstract":"Developing all-solid-state electrolytes, the chips for lithium-metal batteries, with superior electrochemical and mechanical properties awaits the disruptive materials. Herein, ionic covalent organic framework membranes are explored as solid-state electrolytes for single Li<sup>+</sup> conduction. In the membrane, the anion groups act as Li<sup>+</sup> transporter, determining Li<sup>+</sup> binding capacity and releasing ability, whereas the oxygen-containing groups act as Li<sup>+</sup> co-transporter, creating relay sites between adjacent Li<sup>+</sup> transporters for rapid hopping. The membrane exhibits an unprecedented Li<sup>+</sup> conductivity of 1.7 mS cm<sup>−1</sup> with a Li<sup>+</sup>-transference number close to unity at room temperature. Additionally, the membrane possesses high flexibility, low interfacial resistance, and excellent cycling performance at room temperature. This work paves an unprecedented path for the advancement of next-generation Li<sup>+</sup> conductors in solid-state electrolytes.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":null,"pages":null},"PeriodicalIF":27.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202413022","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing all-solid-state electrolytes, the chips for lithium-metal batteries, with superior electrochemical and mechanical properties awaits the disruptive materials. Herein, ionic covalent organic framework membranes are explored as solid-state electrolytes for single Li+ conduction. In the membrane, the anion groups act as Li+ transporter, determining Li+ binding capacity and releasing ability, whereas the oxygen-containing groups act as Li+ co-transporter, creating relay sites between adjacent Li+ transporters for rapid hopping. The membrane exhibits an unprecedented Li+ conductivity of 1.7 mS cm−1 with a Li+-transference number close to unity at room temperature. Additionally, the membrane possesses high flexibility, low interfacial resistance, and excellent cycling performance at room temperature. This work paves an unprecedented path for the advancement of next-generation Li+ conductors in solid-state electrolytes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷酸化共价有机框架膜实现超快单锂离子传输
开发具有优异电化学和机械性能的全固态电解质--锂金属电池的芯片--有待颠覆性材料的出现。在此,我们探索了离子共价有机框架膜作为固态电解质用于单一锂+传导。在膜中,阴离子基团充当 Li+ 转运体,决定 Li+ 的结合能力和释放能力,而含氧基团则充当 Li+ 协同转运体,在相邻的 Li+ 转运体之间建立中继点,实现快速跳跃。在室温下,该膜表现出前所未有的 1.7 mS cm-1 的 Li+ 导电性,Li+-转移数接近一。此外,该膜还具有高柔韧性、低界面电阻以及室温下出色的循环性能。这项工作为在固态电解质中开发下一代 Li+ 导体铺平了一条前所未有的道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
A Stepwise Melting-Polymerizing Molecule for Hydrophobic Grain-Scale Encapsulated Perovskite Solar Cell Highly Responsive Polar Vortices in All-Ferroelectric Heterostructures Photon-Induced Ultrafast Multitemporal Programming of Terahertz Metadevices Assembly of Silicate–Phenolic Network Coatings with Tunable Properties for Controlled Release of Small Molecules Engineering Topological and Chemical Disorder in Pd Sites for Record-Breaking Formic Acid Electrocatalytic Oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1