Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2024-11-12 DOI:10.1039/d4ee04085f
Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu
{"title":"Advancing high-temperature electrostatic energy storage via linker engineering of metal–organic frameworks in polymer nanocomposites","authors":"Zongliang Xie, Zhiyuan Huang, He Li, Tianlei Xu, Haoyu Zhao, Yunfei Wang, Pang Xi, Zhiqiang Cao, Virginia Altoe, Liana M Klivansky, Zaiyu Wang, Steven Shelton, Shiqi Lai, Peng Liu, Chenhui Zhu, Michael D. Connolly, Corie Y. Ralston, Xiaodan Gu, Zongren Peng, Jian Zhang, Yi Liu","doi":"10.1039/d4ee04085f","DOIUrl":null,"url":null,"abstract":"High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"1 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee04085f","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance, thermally resilient polymer dielectrics are essential for film capacitors used in advanced electronic devices and renewable energy systems, particularly at elevated temperatures where conventional polymers fail to perform. Compositing polymers with nanofillers is a well-established approach to enhancing energy storage performance, though there remains a strong need for fillers with broad structural tunability and a clear structure-property relationship to further improve performance at elevated temperatures. Herein, we unravel the untapped potential of UiO-66 metal–organic framework (MOF) derivatives as exceptional nanofillers for tuning the properties of the widely used polyetherimide (PEI). By systematically varying the linker structures, we create a series of isostructural MOF fillers that exhibit contrasting capabilities in regulating the charge transport and energy storage capacities of the resulting composite films. Notably, capacitors based on composite films using the electron-deficient UiO-66-F4 show remarkable long-term charge-discharge stability and achieve ultrahigh discharged energy densities of 9.87 J cm−3 at 150 °C and 9.21 J cm−3 at 200 °C, setting a new benchmark for high-temperature flexible polymer composites. Through comprehensive experimental and theoretical analyses, we establish an unprecedented correlation between the MOF fillers' electronic structures and the composites’ improved electrical breakdown strength and energy storage properties. These findings offer a rational pathway to harness the exceptional structural diversity of MOFs for the development of composite materials suitable for high-temperature electrostatic energy storage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过聚合物纳米复合材料中金属有机框架的链接工程推进高温静电储能
高性能、热弹性聚合物电介质对于先进电子设备和可再生能源系统中使用的薄膜电容器至关重要,尤其是在传统聚合物无法发挥性能的高温条件下。将聚合物与纳米填料复合是提高储能性能的一种行之有效的方法,但目前仍亟需具有广泛结构可调性和明确结构-性能关系的填料,以进一步提高高温下的性能。在此,我们揭示了 UiO-66 金属有机框架 (MOF) 衍生物作为特殊纳米填料在调整广泛使用的聚醚酰亚胺 (PEI) 性能方面尚未开发的潜力。通过系统地改变连接体结构,我们创造出了一系列等结构 MOF 填料,它们在调节所得复合薄膜的电荷传输和能量存储能力方面表现出了截然不同的能力。值得注意的是,基于使用缺电子 UiO-66-F4 的复合薄膜的电容器显示出显著的长期充放电稳定性,并在 150 °C 和 200 °C 温度下分别实现了 9.87 J cm-3 和 9.21 J cm-3 的超高放电能量密度,为高温柔性聚合物复合材料树立了新的标杆。通过全面的实验和理论分析,我们在 MOF 填料的电子结构与复合材料改进的电击穿强度和储能特性之间建立了前所未有的相关性。这些发现为利用 MOFs 的特殊结构多样性开发适用于高温静电储能的复合材料提供了一条合理的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Correction: Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy Quenching-induced lattice modifications endowing Li-rich layered cathodes with ultralow voltage decay and long life Digitally-assisted structure design of a large-size proton exchange membrane fuel cell Non-Fused Core Linked Star-Shaped Oligomer Acceptors for over 19% Efficiency and Stable Binary Organic Solar Cells Enhanced bipolar membrane for durable ampere-level water electrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1