Direct Data-Driven Design of LPV Controllers and Polytopic Invariant Sets With Cross-Covariance Noise Bounds

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-10-28 DOI:10.1109/LCSYS.2024.3487504
Manas Mejari;Valentina Breschi
{"title":"Direct Data-Driven Design of LPV Controllers and Polytopic Invariant Sets With Cross-Covariance Noise Bounds","authors":"Manas Mejari;Valentina Breschi","doi":"10.1109/LCSYS.2024.3487504","DOIUrl":null,"url":null,"abstract":"We propose a direct data-driven method for the concurrent computation of polytopic robust control invariant (RCI) sets and the associated invariance-inducing control laws for linear parameter-varying (LPV) systems. We present a data-based covariance parameterization of the gain-scheduled controller and the closed-loop dynamics and show that by assuming bounded cross-covariance noise, the invariance condition can be formulated as a set of data-based LMIs such that the number of decision variables are independent of the length of the dataset. These LMIs are combined with polytopic state-input constraints in a convex semi-definite program to maximize the volume of the RCI set. A numerical example demonstrates the computational effectiveness of the proposed method in synthesizing RCI sets even with large datasets.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2427-2432"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10737127/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a direct data-driven method for the concurrent computation of polytopic robust control invariant (RCI) sets and the associated invariance-inducing control laws for linear parameter-varying (LPV) systems. We present a data-based covariance parameterization of the gain-scheduled controller and the closed-loop dynamics and show that by assuming bounded cross-covariance noise, the invariance condition can be formulated as a set of data-based LMIs such that the number of decision variables are independent of the length of the dataset. These LMIs are combined with polytopic state-input constraints in a convex semi-definite program to maximize the volume of the RCI set. A numerical example demonstrates the computational effectiveness of the proposed method in synthesizing RCI sets even with large datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
直接数据驱动设计 LPV 控制器和具有交叉协方差噪声约束的多拓扑不变集
我们提出了一种直接的数据驱动方法,用于同时计算线性参数变化(LPV)系统的多顶稳健控制不变性(RCI)集和相关的不变性诱导控制法。我们提出了增益调度控制器和闭环动力学的基于数据的协方差参数化,并证明通过假设有界交叉协方差噪声,不变性条件可表述为一组基于数据的 LMI,其中决策变量的数量与数据集的长度无关。这些 LMI 与凸半有限元程序中的多拓扑状态输入约束相结合,可使 RCI 集的体积最大化。一个数值示例证明了所提方法在合成 RCI 集时的计算有效性,即使数据集很大也不例外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Asynchronously Intermittent Decentralized Control of Large-Scale Discrete-Time Systems Fixed-Time Stability Criteria of Cyclic Switched Nonlinear Systems Transmission Schedule for Remote State Estimation in CPSs With Two-Hop Networks in Presence of an Eavesdropper An Augmented Lagrangian Perspective on Differential Flatness-Based Control of Dual Spring-Loaded Inverted Pendulum Model Tuning of Real-Time Optimization of Heliostat Concentrated Solar Power
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1