G. A. Filgueira;R. S. Pessoa;R. K. Yamamoto;C. Alves;A. S. da Silva Sobrinho
{"title":"Plasma-Activated Tap Water by Gliding Arc Discharge Through Bubbles Using an Inverted Reactor Approach","authors":"G. A. Filgueira;R. S. Pessoa;R. K. Yamamoto;C. Alves;A. S. da Silva Sobrinho","doi":"10.1109/TPS.2024.3431942","DOIUrl":null,"url":null,"abstract":"This study employed an inverted reactor approach to activate tap water (TW) using effluent bubbles derived from a gliding arc discharge (GAD). Optical emission spectroscopy (OES) analysis revealed the dominant presence of nitrogen species and oxygen radicals within specified spectral ranges. The physicochemical attributes of the plasma-activated TW (PATW) remained consistent, highlighting the efficacy of the reactor’s bubbling system. Through UV-Vis spectrophotometry and pH analysis, the notable observation was the stabilizing influence of hydrogen peroxide (H2O2) and positive hydrogen ions (H+) during the initial activation phases (75 min), which played a significant role in maintaining mildly alkaline pH. Energy efficiency metrics demonstrated a decline up to 1.25 h of activation, with subsequent stabilization. Our research outcomes further emphasize the efficacy of GAD, shedding light on its significant potential in optimizing the water activation process.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 8","pages":"3127-3135"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10702193/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
This study employed an inverted reactor approach to activate tap water (TW) using effluent bubbles derived from a gliding arc discharge (GAD). Optical emission spectroscopy (OES) analysis revealed the dominant presence of nitrogen species and oxygen radicals within specified spectral ranges. The physicochemical attributes of the plasma-activated TW (PATW) remained consistent, highlighting the efficacy of the reactor’s bubbling system. Through UV-Vis spectrophotometry and pH analysis, the notable observation was the stabilizing influence of hydrogen peroxide (H2O2) and positive hydrogen ions (H+) during the initial activation phases (75 min), which played a significant role in maintaining mildly alkaline pH. Energy efficiency metrics demonstrated a decline up to 1.25 h of activation, with subsequent stabilization. Our research outcomes further emphasize the efficacy of GAD, shedding light on its significant potential in optimizing the water activation process.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.