Claudio Battiloro;Lucia Testa;Lorenzo Giusti;Stefania Sardellitti;Paolo Di Lorenzo;Sergio Barbarossa
{"title":"Generalized Simplicial Attention Neural Networks","authors":"Claudio Battiloro;Lucia Testa;Lorenzo Giusti;Stefania Sardellitti;Paolo Di Lorenzo;Sergio Barbarossa","doi":"10.1109/TSIPN.2024.3485473","DOIUrl":null,"url":null,"abstract":"Graph machine learning methods excel at leveraging pairwise relations present in the data. However, graphs are unable to fully capture the multi-way interactions inherent in many complex systems. An effective way to incorporate them is to model the data on higher-order combinatorial topological spaces, such as Simplicial Complexes (SCs) or Cell Complexes. For this reason, we introduce Generalized Simplicial Attention Neural Networks (GSANs), novel neural network architectures designed to process data living on simplicial complexes using masked self-attentional layers. Hinging on topological signal processing principles, we devise a series of principled self-attention mechanisms able to process data associated with simplices of various order, such as nodes, edges, triangles, and beyond. These schemes learn how to combine data associated with neighbor simplices of consecutive order in a task-oriented fashion, leveraging on the simplicial Dirac operator and its Dirac decomposition. We also prove that GSAN satisfies two fundamental properties: permutation equivariance and simplicial-awareness. Finally, we illustrate how our approach compares favorably with other simplicial and graph models when applied to several (inductive and transductive) tasks, such as trajectory prediction, missing data imputation, graph classification, and simplex prediction.","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"833-850"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735150/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Graph machine learning methods excel at leveraging pairwise relations present in the data. However, graphs are unable to fully capture the multi-way interactions inherent in many complex systems. An effective way to incorporate them is to model the data on higher-order combinatorial topological spaces, such as Simplicial Complexes (SCs) or Cell Complexes. For this reason, we introduce Generalized Simplicial Attention Neural Networks (GSANs), novel neural network architectures designed to process data living on simplicial complexes using masked self-attentional layers. Hinging on topological signal processing principles, we devise a series of principled self-attention mechanisms able to process data associated with simplices of various order, such as nodes, edges, triangles, and beyond. These schemes learn how to combine data associated with neighbor simplices of consecutive order in a task-oriented fashion, leveraging on the simplicial Dirac operator and its Dirac decomposition. We also prove that GSAN satisfies two fundamental properties: permutation equivariance and simplicial-awareness. Finally, we illustrate how our approach compares favorably with other simplicial and graph models when applied to several (inductive and transductive) tasks, such as trajectory prediction, missing data imputation, graph classification, and simplex prediction.
期刊介绍:
The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.