Learning Based Exteroception of Soft Underwater Manipulator With Soft Actuator Network

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-10-29 DOI:10.1109/LRA.2024.3487512
Kailuan Tang;Shaowu Tang;Chenghua Lu;Shijian Wu;Sicong Liu;Juan Yi;Jian S. Dai;Zheng Wang
{"title":"Learning Based Exteroception of Soft Underwater Manipulator With Soft Actuator Network","authors":"Kailuan Tang;Shaowu Tang;Chenghua Lu;Shijian Wu;Sicong Liu;Juan Yi;Jian S. Dai;Zheng Wang","doi":"10.1109/LRA.2024.3487512","DOIUrl":null,"url":null,"abstract":"Interactions with environmental objects can induce substantial alterations in both exteroceptive and proprioceptive signals. However, the deployment of exteroceptive sensors within underwater soft manipulators encounters numerous challenges and constraints, thereby imposing limitations on their perception capabilities. In this article, we present a novel learning-based exteroceptive approach that utilizes internal proprioceptive signals and harnesses the principles of soft actuator network (SAN). Deformation and vibration resulting from external collisions tend to propagate through the SANs in underwater soft manipulators and can be detected by proprioceptive sensors. We extract features from the sensor signals and develop a fully-connected neural network (FCNN)-based classifier to determine collision positions. We have constructed a training dataset and an independent validation dataset for the purpose of training and validating the classifier. The experimental results affirm that the proposed method can identify collision locations with an accuracy level of 97.11% using the independent validation dataset, which exhibits potential applications within the domain of underwater soft robotics perception and control.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11082-11089"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10737404/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Interactions with environmental objects can induce substantial alterations in both exteroceptive and proprioceptive signals. However, the deployment of exteroceptive sensors within underwater soft manipulators encounters numerous challenges and constraints, thereby imposing limitations on their perception capabilities. In this article, we present a novel learning-based exteroceptive approach that utilizes internal proprioceptive signals and harnesses the principles of soft actuator network (SAN). Deformation and vibration resulting from external collisions tend to propagate through the SANs in underwater soft manipulators and can be detected by proprioceptive sensors. We extract features from the sensor signals and develop a fully-connected neural network (FCNN)-based classifier to determine collision positions. We have constructed a training dataset and an independent validation dataset for the purpose of training and validating the classifier. The experimental results affirm that the proposed method can identify collision locations with an accuracy level of 97.11% using the independent validation dataset, which exhibits potential applications within the domain of underwater soft robotics perception and control.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的软执行器网络水下软机械手外感知技术
与环境物体的相互作用会引起外部感觉和本体感觉信号的巨大变化。然而,在水下软机械手中部署外感知传感器会遇到许多挑战和限制,从而对其感知能力造成限制。在这篇文章中,我们提出了一种基于学习的新型外感知方法,它利用内部本体感觉信号和软致动器网络(SAN)原理。外部碰撞产生的变形和振动往往会通过水下软体机械手的 SAN 传播,并可被本体感觉传感器检测到。我们从传感器信号中提取特征,并开发了基于全连接神经网络(FCNN)的分类器来确定碰撞位置。我们构建了一个训练数据集和一个独立的验证数据集,用于训练和验证分类器。实验结果表明,利用独立验证数据集,所提出的方法能够以 97.11% 的准确率识别碰撞位置,在水下软机器人感知和控制领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1