{"title":"Discharge Mode Analysis of Coplanar Dielectric Barrier Discharge Based on Image Processing","authors":"Qiaojue Liu;Mi You;Jieming Wang;Yangyang Chen;Zhanhe Guo;Shushu Zhu;Shuqun Wu","doi":"10.1109/TPS.2024.3466912","DOIUrl":null,"url":null,"abstract":"Coplanar dielectric barrier discharge (CDBD) is widely used on the surface of materials because of its high plasma density and no requirement for the thickness of modified materials. In order to make the filamentary CDBD achieve suitable modification conditions under atmospheric pressure air conditions, a convenient and effective method for judging the macroscopic characteristics of discharge is urgently needed. In this article, a method of CDBD discharge analysis based on image processing is proposed, which characterizes the discharge uniformity by the saturation voltage obtained by binarization of the discharge image, the average pixel value, and the pixel variance of the discharge gray image. It makes up for the lack of identification of discharge uniformity by traditional diagnostic methods and can analyze discharge saturation voltage, discharge intensity, and uniformity efficiently and quickly. According to the above three parameters, we can further divide the discharge mode into fast discharge mode, slow discharge mode, and saturated discharge mode. The research in this article simplifies the process of determining the working conditions of surface modification using CDBD and provides a new idea for the scientific and quantitative study of the discharge characteristics of CDBD.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"52 8","pages":"3166-3173"},"PeriodicalIF":1.3000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10709657/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Coplanar dielectric barrier discharge (CDBD) is widely used on the surface of materials because of its high plasma density and no requirement for the thickness of modified materials. In order to make the filamentary CDBD achieve suitable modification conditions under atmospheric pressure air conditions, a convenient and effective method for judging the macroscopic characteristics of discharge is urgently needed. In this article, a method of CDBD discharge analysis based on image processing is proposed, which characterizes the discharge uniformity by the saturation voltage obtained by binarization of the discharge image, the average pixel value, and the pixel variance of the discharge gray image. It makes up for the lack of identification of discharge uniformity by traditional diagnostic methods and can analyze discharge saturation voltage, discharge intensity, and uniformity efficiently and quickly. According to the above three parameters, we can further divide the discharge mode into fast discharge mode, slow discharge mode, and saturated discharge mode. The research in this article simplifies the process of determining the working conditions of surface modification using CDBD and provides a new idea for the scientific and quantitative study of the discharge characteristics of CDBD.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.