Visuomotor Policy Learning for Task Automation of Surgical Robot

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-09-20 DOI:10.1109/TMRB.2024.3464090
Junhui Huang;Qingxin Shi;Dongsheng Xie;Yiming Ma;Xiaoming Liu;Changsheng Li;Xingguang Duan
{"title":"Visuomotor Policy Learning for Task Automation of Surgical Robot","authors":"Junhui Huang;Qingxin Shi;Dongsheng Xie;Yiming Ma;Xiaoming Liu;Changsheng Li;Xingguang Duan","doi":"10.1109/TMRB.2024.3464090","DOIUrl":null,"url":null,"abstract":"With the increasing adoption of robotic surgery systems, the need for automated surgical tasks has become more pressing. Recent learning-based approaches provide solutions to surgical automation but typically rely on low-dimensional observations. To further imitate the actions of surgeons in an end-to-end paradigm, this paper introduces a novel visual-based approach to automating surgical tasks using generative imitation learning for robotic systems. We develop a hybrid model integrating state space models transformer, and conditional variational autoencoders (CVAE) to enhance performance and generalization called ACMT. The proposed model, leveraging the Mamba block and multi-head cross-attention mechanisms for sequential modeling, achieves a 75-100% success rate with just 100 demonstrations for most of the tasks. This work significantly advances data-driven automation in surgical robotics, aiming to alleviate the burden on surgeons and improve surgical outcomes.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685114/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing adoption of robotic surgery systems, the need for automated surgical tasks has become more pressing. Recent learning-based approaches provide solutions to surgical automation but typically rely on low-dimensional observations. To further imitate the actions of surgeons in an end-to-end paradigm, this paper introduces a novel visual-based approach to automating surgical tasks using generative imitation learning for robotic systems. We develop a hybrid model integrating state space models transformer, and conditional variational autoencoders (CVAE) to enhance performance and generalization called ACMT. The proposed model, leveraging the Mamba block and multi-head cross-attention mechanisms for sequential modeling, achieves a 75-100% success rate with just 100 demonstrations for most of the tasks. This work significantly advances data-driven automation in surgical robotics, aiming to alleviate the burden on surgeons and improve surgical outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外科手术机器人任务自动化的视觉运动策略学习
随着机器人手术系统的日益普及,对自动化手术任务的需求变得更加迫切。近期基于学习的方法为手术自动化提供了解决方案,但通常依赖于低维观察。为了在端到端范例中进一步模仿外科医生的操作,本文介绍了一种基于视觉的新方法,利用机器人系统的生成模仿学习实现手术任务自动化。我们开发了一种集成了状态空间模型变换器和条件变异自动编码器(CVAE)的混合模型,以提高性能和泛化能力,该模型被称为 ACMT。所提出的模型利用 Mamba 块和多头交叉注意机制进行顺序建模,在大多数任务中只需演示 100 次就能达到 75-100% 的成功率。这项工作极大地推动了手术机器人中数据驱动的自动化,旨在减轻外科医生的负担,改善手术效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial Special section on the Hamlyn Symposium 2023—Immersive Tech: The Future of Medicine IEEE Transactions on Medical Robotics and Bionics Publication Information IEEE Transactions on Medical Robotics and Bionics Information for Authors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1