{"title":"A Multi-Cavity Touch Interface for a Flexible Soft Laparoscopy Device: Design and Evaluation","authors":"Jialei Shi;Ge Shi;Yu Wu;Helge A. Wurdemann","doi":"10.1109/TMRB.2024.3464676","DOIUrl":null,"url":null,"abstract":"Medical instruments made of compliant materials provide increased safety and dexterity when interacting with anatomical environments. Beyond the development of hardware, the maneuverability of these medical instruments presents significant challenges, especially in practical applications like minimally invasive surgery. Consequently, developing efficient and intuitive interfaces for operating these soft instruments is crucial. This study focuses on creating a flexible, soft robotic handheld laparoscopy device featuring a multi-cavity touch interface. The pneumatically driven soft robotic device has a continuum structure and an outermost diameter of 11.5 mm. The laparoscopy device is equipped with a silicone-cast touch interface that includes five air-filled cavities. Monitoring the pressure within these cavities facilitates the identification of user inputs, offering an intuitive and cost-effective way to operate the device. To evaluate the laparoscopy device’s performance, in vitro tests were conducted using a test rig and a phantom environment. The device’s usability was assessed by participants, providing valuable insights into its functionality and practicality in a controlled setting. These evaluations lay the groundwork for future advancements in soft robotic medical instruments for minimally invasive procedures.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684779/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Medical instruments made of compliant materials provide increased safety and dexterity when interacting with anatomical environments. Beyond the development of hardware, the maneuverability of these medical instruments presents significant challenges, especially in practical applications like minimally invasive surgery. Consequently, developing efficient and intuitive interfaces for operating these soft instruments is crucial. This study focuses on creating a flexible, soft robotic handheld laparoscopy device featuring a multi-cavity touch interface. The pneumatically driven soft robotic device has a continuum structure and an outermost diameter of 11.5 mm. The laparoscopy device is equipped with a silicone-cast touch interface that includes five air-filled cavities. Monitoring the pressure within these cavities facilitates the identification of user inputs, offering an intuitive and cost-effective way to operate the device. To evaluate the laparoscopy device’s performance, in vitro tests were conducted using a test rig and a phantom environment. The device’s usability was assessed by participants, providing valuable insights into its functionality and practicality in a controlled setting. These evaluations lay the groundwork for future advancements in soft robotic medical instruments for minimally invasive procedures.