Giovanni Pittiglio;Fabio Leuenberger;Margherita Mencattelli;Max McCandless;Edward O’Leary;Pierre E. Dupont
{"title":"Magnetic Ball Chain Robots for Cardiac Arrhythmia Treatment","authors":"Giovanni Pittiglio;Fabio Leuenberger;Margherita Mencattelli;Max McCandless;Edward O’Leary;Pierre E. Dupont","doi":"10.1109/TMRB.2024.3465828","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel magnetic navigation system for cardiac ablation. The system is formed from two key elements: a magnetic ablation catheter consisting of a chain of spherical permanent magnets; and an actuation system comprised of two cart-mounted permanent magnets undergoing pure rotation. The catheter design enables a large magnetic content with the goal of minimizing the footprint of the actuation system for easier integration with the clinical workflow. We present a quasi-static model of the catheter, the design of the actuation units, and their control modalities. Experimental validation shows that we can use small rotating magnets (119mm diameter) to reach cardiac ablation targets while generating clinically-relevant forces. Catheter control using a joystick is compared with manual catheter control. While total task completion time is similar, smoother navigation is observed using the proposed robotic system. We also demonstrate that the ball chain can ablate heart tissue and generate lesions comparable to the current clinical ablation catheters.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"6 4","pages":"1322-1333"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10685499/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel magnetic navigation system for cardiac ablation. The system is formed from two key elements: a magnetic ablation catheter consisting of a chain of spherical permanent magnets; and an actuation system comprised of two cart-mounted permanent magnets undergoing pure rotation. The catheter design enables a large magnetic content with the goal of minimizing the footprint of the actuation system for easier integration with the clinical workflow. We present a quasi-static model of the catheter, the design of the actuation units, and their control modalities. Experimental validation shows that we can use small rotating magnets (119mm diameter) to reach cardiac ablation targets while generating clinically-relevant forces. Catheter control using a joystick is compared with manual catheter control. While total task completion time is similar, smoother navigation is observed using the proposed robotic system. We also demonstrate that the ball chain can ablate heart tissue and generate lesions comparable to the current clinical ablation catheters.