ThreatInsight: Innovating Early Threat Detection Through Threat-Intelligence-Driven Analysis and Attribution

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-10-04 DOI:10.1109/TKDE.2024.3474792
Ziyu Wang;Yinghai Zhou;Hao Liu;Jing Qiu;Binxing Fang;Zhihong Tian
{"title":"ThreatInsight: Innovating Early Threat Detection Through Threat-Intelligence-Driven Analysis and Attribution","authors":"Ziyu Wang;Yinghai Zhou;Hao Liu;Jing Qiu;Binxing Fang;Zhihong Tian","doi":"10.1109/TKDE.2024.3474792","DOIUrl":null,"url":null,"abstract":"The complexity and ongoing evolution of Advanced Persistent Threats (APTs) compromise the efficacy of conventional cybersecurity measures. Firewalls, intrusion detection systems, and antivirus software, which are dependent on static rules and predefined signatures, are increasingly ineffective against these sophisticated threats. Moreover, the use of system audit logs for threat hunting involves a retrospective review of cybersecurity incidents to reconstruct attack paths for attribution, which affects the timeliness and effectiveness of threat detection and response. Even when the attacker is identified, this method does not prevent cyber attacks. To address these challenges, we introduce ThreatInsight, a novel early-stage threat detection solution that minimizes reliance on system audit logs. ThreatInsight detects potential threats by analyzing IPs captured from HoneyPoints. These IPs are processed through threat data mining and threat feature modeling. By employing fact-based and semantic reasoning techniques based on the APT Threat Intelligence Knowledge Graph (APT-TI-KG), ThreatInsight identifies and attributes attackers. The system generates analysis reports detailing the threat knowledge concerning IPs and attributed attackers, equipping analysts with actionable insights and defense strategies. The system architecture includes modules for HoneyPoint IP extraction, Threat Intelligence (TI) data analysis, attacker attribution, and analysis report generation. ThreatInsight facilitates real-time analysis and the identification of potential threats at early stages, thereby enhancing the early detection capabilities of cybersecurity defense systems and improving overall threat detection and proactive defense effectiveness.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"9388-9402"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10705917/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity and ongoing evolution of Advanced Persistent Threats (APTs) compromise the efficacy of conventional cybersecurity measures. Firewalls, intrusion detection systems, and antivirus software, which are dependent on static rules and predefined signatures, are increasingly ineffective against these sophisticated threats. Moreover, the use of system audit logs for threat hunting involves a retrospective review of cybersecurity incidents to reconstruct attack paths for attribution, which affects the timeliness and effectiveness of threat detection and response. Even when the attacker is identified, this method does not prevent cyber attacks. To address these challenges, we introduce ThreatInsight, a novel early-stage threat detection solution that minimizes reliance on system audit logs. ThreatInsight detects potential threats by analyzing IPs captured from HoneyPoints. These IPs are processed through threat data mining and threat feature modeling. By employing fact-based and semantic reasoning techniques based on the APT Threat Intelligence Knowledge Graph (APT-TI-KG), ThreatInsight identifies and attributes attackers. The system generates analysis reports detailing the threat knowledge concerning IPs and attributed attackers, equipping analysts with actionable insights and defense strategies. The system architecture includes modules for HoneyPoint IP extraction, Threat Intelligence (TI) data analysis, attacker attribution, and analysis report generation. ThreatInsight facilitates real-time analysis and the identification of potential threats at early stages, thereby enhancing the early detection capabilities of cybersecurity defense systems and improving overall threat detection and proactive defense effectiveness.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ThreatInsight:通过威胁情报驱动的分析和归因创新早期威胁检测
高级持续性威胁(APTs)的复杂性和不断演变削弱了传统网络安全措施的效力。防火墙、入侵检测系统和防病毒软件依赖于静态规则和预定义签名,对这些复杂的威胁越来越无能为力。此外,使用系统审计日志进行威胁追捕需要对网络安全事件进行回顾性审查,以重建攻击路径,从而确定归因,这影响了威胁检测和响应的及时性和有效性。即使找出了攻击者,这种方法也无法阻止网络攻击。为了应对这些挑战,我们推出了 ThreatInsight,这是一种新型的早期威胁检测解决方案,可最大限度地减少对系统审计日志的依赖。ThreatInsight 通过分析从 HoneyPoint 捕捉到的 IP 来检测潜在威胁。这些 IP 会通过威胁数据挖掘和威胁特征建模进行处理。通过采用基于 APT 威胁情报知识图谱(APT-TI-KG)的事实和语义推理技术,ThreatInsight 可以识别攻击者并确定其属性。系统会生成分析报告,详细介绍有关 IP 和归属攻击者的威胁知识,为分析人员提供可操作的见解和防御策略。系统架构包括 HoneyPoint IP 提取、威胁情报 (TI) 数据分析、攻击者归属和分析报告生成模块。ThreatInsight 有助于实时分析和早期识别潜在威胁,从而增强网络安全防御系统的早期检测能力,提高整体威胁检测和主动防御的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1