Thermal behavior of pervious concrete in wet conditions

IF 3.4 3区 工程技术 Q2 CONSTRUCTION & BUILDING TECHNOLOGY Materials and Structures Pub Date : 2024-11-12 DOI:10.1617/s11527-024-02509-5
Khaled Seifeddine, Sofiane Amziane, Evelyne Toussaint
{"title":"Thermal behavior of pervious concrete in wet conditions","authors":"Khaled Seifeddine,&nbsp;Sofiane Amziane,&nbsp;Evelyne Toussaint","doi":"10.1617/s11527-024-02509-5","DOIUrl":null,"url":null,"abstract":"<div><p>Conventional impervious pavements occupy a large proportion of most cities, due to urbanization and the extensive development of transportation infrastructure. These pavements cause environmental problems such as flooding and urban heat islands. Pervious concrete (PC) is a special type of concrete, characterized by a porous structure that allows water infiltration and has the potential to reduce the effects of urban heat islands through cooling by evaporation. However, due to the low water absorption and retention properties of PC, it cannot effectively meet evaporative cooling needs. This study investigates the thermal behavior of PC in dry and wet laboratory conditions under controlled climatic conditions. Three types of PCs were fabricated: gravel-based PC (PCG) and Pozzolan-based PC (PCP1), having almost the same particle size distribution, and less coarse Pozzolan-based PC with a monodisperse particle size distribution (PCP2). The results show that the surface temperature of pozzolan-based PC is up to 4 °C higher than that of PCG in dry conditions. The partial immersion test shows that the use of pozzolan aggregates in PC mixtures improves the water-absorption properties compared to PCG. In addition, pozzolan-based PC can have a surface temperature up to 11.7 °C lower than PCG during the daytime and up to 3 °C lower during the nighttime. The use of lightweight aggregates with high water-absorption coefficients in the PC mix is only recommended in wet conditions.</p></div>","PeriodicalId":691,"journal":{"name":"Materials and Structures","volume":"57 10","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1617/s11527-024-02509-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional impervious pavements occupy a large proportion of most cities, due to urbanization and the extensive development of transportation infrastructure. These pavements cause environmental problems such as flooding and urban heat islands. Pervious concrete (PC) is a special type of concrete, characterized by a porous structure that allows water infiltration and has the potential to reduce the effects of urban heat islands through cooling by evaporation. However, due to the low water absorption and retention properties of PC, it cannot effectively meet evaporative cooling needs. This study investigates the thermal behavior of PC in dry and wet laboratory conditions under controlled climatic conditions. Three types of PCs were fabricated: gravel-based PC (PCG) and Pozzolan-based PC (PCP1), having almost the same particle size distribution, and less coarse Pozzolan-based PC with a monodisperse particle size distribution (PCP2). The results show that the surface temperature of pozzolan-based PC is up to 4 °C higher than that of PCG in dry conditions. The partial immersion test shows that the use of pozzolan aggregates in PC mixtures improves the water-absorption properties compared to PCG. In addition, pozzolan-based PC can have a surface temperature up to 11.7 °C lower than PCG during the daytime and up to 3 °C lower during the nighttime. The use of lightweight aggregates with high water-absorption coefficients in the PC mix is only recommended in wet conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
透水混凝土在潮湿条件下的热行为
由于城市化和交通基础设施的广泛发展,传统的不透水路面在大多数城市中占有很大比例。这些路面造成了洪水和城市热岛等环境问题。透水混凝土(PC)是一种特殊的混凝土,其特点是多孔结构允许水渗透,并有可能通过蒸发冷却来减少城市热岛的影响。然而,由于 PC 的吸水和保水性能较低,因此无法有效满足蒸发冷却的需求。本研究调查了 PC 在受控气候条件下的干湿实验室条件下的热行为。研究人员制作了三种类型的 PC:粒度分布基本相同的砾石基 PC(PCG)和坡莫兰基 PC(PCP1),以及粒度分布较为分散的较粗坡莫兰基 PC(PCP2)。结果表明,在干燥条件下,坡莫兰基 PC 的表面温度比 PCG 高出 4 °C。部分浸泡试验表明,与 PCG 相比,在 PC 混合物中使用水青石骨料可提高吸水性能。此外,基于水青石的 PC 在白天的表面温度可比 PCG 低 11.7 °C,在夜间可比 PCG 低 3 °C。只有在潮湿条件下,才建议在 PC 混合料中使用吸水系数高的轻质骨料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials and Structures
Materials and Structures 工程技术-材料科学:综合
CiteScore
6.40
自引率
7.90%
发文量
222
审稿时长
5.9 months
期刊介绍: Materials and Structures, the flagship publication of the International Union of Laboratories and Experts in Construction Materials, Systems and Structures (RILEM), provides a unique international and interdisciplinary forum for new research findings on the performance of construction materials. A leader in cutting-edge research, the journal is dedicated to the publication of high quality papers examining the fundamental properties of building materials, their characterization and processing techniques, modeling, standardization of test methods, and the application of research results in building and civil engineering. Materials and Structures also publishes comprehensive reports prepared by the RILEM’s technical committees.
期刊最新文献
Mix proportion optimization for cement-based absorbent materials mixed with EP and SAP: Performance and microstructure Assessment of the CO2 sequestration potential of waste concrete fines Corrosion attack in existing reinforced concrete structures: in-field investigation and analysis of naturally corroded bars Enhancing adhesion of carbon-glass hybrid fibre-reinforced polymer tubes to seawater sea sand concrete through surface sand coating Effect of coarse recycled aggregate with embedded fibres on the mechanical properties and microstructure of polypropylene fibre-reinforced concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1