Spintronics for achieving system-level energy-efficient logic

Jean Anne C. Incorvia, T. Patrick Xiao, Nicholas Zogbi, Azad Naeemi, Christoph Adelmann, Francky Catthoor, Mehdi Tahoori, Fèlix Casanova, Markus Becherer, Guillaume Prenat, Sebastien Couet
{"title":"Spintronics for achieving system-level energy-efficient logic","authors":"Jean Anne C. Incorvia, T. Patrick Xiao, Nicholas Zogbi, Azad Naeemi, Christoph Adelmann, Francky Catthoor, Mehdi Tahoori, Fèlix Casanova, Markus Becherer, Guillaume Prenat, Sebastien Couet","doi":"10.1038/s44287-024-00103-z","DOIUrl":null,"url":null,"abstract":"The demand for data processing in high-performance computing is growing rapidly. Extrapolating these trends to the long term suggests that a switch, which is more energy-efficient than a silicon complementary metal-oxide semiconductor (CMOS) switch, is necessary to support future computing needs. Spintronic logic, which encodes information using spin and magnetism, can theoretically provide an energy-efficient switch; however, it is less mature than CMOS logic and has yet to be realized at the level of a full processor system, thus warranting an informed review of spintronic logic technologies with guidelines for future research directions. In this Review, we contextualize spintronic logic within the broader goals of beyond-CMOS computing. We then provide an overview of five types of spintronic logic, discussing the operating principles, advantages, advancements and challenges of each type. We highlight that future research in spintronic logic should focus on the realization of low-voltage operation, transparent benchmarking for application-level tasks, development of computing architectures that exploit unique features of spintronics such as non-volatility and high endurance, and adaptation of spintronic logic to circuits usable for both computing and memory. This Review provides motivation and direction for high-risk, high-reward research in spintronic logic that should be pursued in parallel with the CMOS road map. This Review showcases the research progress and prospects of spintronic logic, which encodes information using spin and magnetism. Focusing on five exemplary types, we discuss the promise, challenges and future research directions in the context of high-performance computing needs.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"700-713"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00103-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for data processing in high-performance computing is growing rapidly. Extrapolating these trends to the long term suggests that a switch, which is more energy-efficient than a silicon complementary metal-oxide semiconductor (CMOS) switch, is necessary to support future computing needs. Spintronic logic, which encodes information using spin and magnetism, can theoretically provide an energy-efficient switch; however, it is less mature than CMOS logic and has yet to be realized at the level of a full processor system, thus warranting an informed review of spintronic logic technologies with guidelines for future research directions. In this Review, we contextualize spintronic logic within the broader goals of beyond-CMOS computing. We then provide an overview of five types of spintronic logic, discussing the operating principles, advantages, advancements and challenges of each type. We highlight that future research in spintronic logic should focus on the realization of low-voltage operation, transparent benchmarking for application-level tasks, development of computing architectures that exploit unique features of spintronics such as non-volatility and high endurance, and adaptation of spintronic logic to circuits usable for both computing and memory. This Review provides motivation and direction for high-risk, high-reward research in spintronic logic that should be pursued in parallel with the CMOS road map. This Review showcases the research progress and prospects of spintronic logic, which encodes information using spin and magnetism. Focusing on five exemplary types, we discuss the promise, challenges and future research directions in the context of high-performance computing needs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实现系统级高能效逻辑的自旋电子学
高性能计算对数据处理的需求正在迅速增长。将这些趋势推断到长期来看,需要一种比硅互补金属氧化物半导体(CMOS)开关更节能的开关来支持未来的计算需求。利用自旋和磁性对信息进行编码的自旋电子逻辑理论上可以提供一种高能效开关;但是,它不如 CMOS 逻辑成熟,而且尚未在完整处理器系统的层面上实现,因此需要对自旋电子逻辑技术 进行翔实的回顾,并为未来的研究方向提供指导。在这篇综述中,我们将把自旋电子逻辑与超越CMOS计算的更广泛目标联系起来。然后,我们概述了五种类型的自旋电子逻辑,讨论了每种类型的工作原理、优势、进步和挑战。我们强调,未来的自旋电子逻辑研究应重点关注实现低电压运行、应用级任务的透明基准、开发可利用自旋电子独特功能(如非挥发性和高耐用性)的计算架构,以及将自旋电子逻辑调整为可用于计算和存储器的电路。本综述为高风险、高回报的自旋电子逻辑研究提供了动力和方向,这些研究应与 CMOS 路线图同步进行。本综述展示了利用自旋和磁性编码信息的自旋电子逻辑的研究进展和前景。我们以五种典型类型为重点,讨论了高性能计算所需的前景、挑战和未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The future of 2D spintronics Spintronics for ultra-low-power circuits and systems Spin-transfer torque magnetoresistive random access memory technology status and future directions Perpendicularly magnetized materials for energy-efficient orbitronics Spintronic neural systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1