首页 > 最新文献

Nature Reviews Electrical Engineering最新文献

英文 中文
The future of 2D spintronics 二维自旋电子学的未来
Pub Date : 2024-11-12 DOI: 10.1038/s44287-024-00115-9
Tiancheng Song, Xiaodong Xu
The rapid advances in van der Waals magnets provide a platform for exploring spintronics in the 2D limit. Leveraging the unique properties of 2D magnets with new tuning knobs could see 2D spintronics find its applications in both quantum and classic information processing.
范德华磁体的快速发展为探索二维极限自旋电子学提供了一个平台。利用二维磁体的独特性能和新的调谐旋钮,二维自旋电子学将在量子和传统信息处理领域得到应用。
{"title":"The future of 2D spintronics","authors":"Tiancheng Song, Xiaodong Xu","doi":"10.1038/s44287-024-00115-9","DOIUrl":"10.1038/s44287-024-00115-9","url":null,"abstract":"The rapid advances in van der Waals magnets provide a platform for exploring spintronics in the 2D limit. Leveraging the unique properties of 2D magnets with new tuning knobs could see 2D spintronics find its applications in both quantum and classic information processing.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"696-697"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spintronics for ultra-low-power circuits and systems 用于超低功耗电路和系统的自旋电子学
Pub Date : 2024-11-12 DOI: 10.1038/s44287-024-00119-5
Spintronic devices that leverage electron spins for information processing offer a new frontier for ultra-low-power circuits and systems for beyond-CMOS technology. Spintronic devices that leverage electron spins for information processing offer a new frontier for ultra-low-power circuits and systems for beyond-CMOS technology.
利用电子自旋进行信息处理的自旋电子器件为超低功耗电路和系统提供了超越CMOS技术的新领域。利用电子自旋进行信息处理的自旋电子器件为超低功耗电路和系统提供了一个超越CMOS技术的新领域。
{"title":"Spintronics for ultra-low-power circuits and systems","authors":"","doi":"10.1038/s44287-024-00119-5","DOIUrl":"10.1038/s44287-024-00119-5","url":null,"abstract":"Spintronic devices that leverage electron spins for information processing offer a new frontier for ultra-low-power circuits and systems for beyond-CMOS technology. Spintronic devices that leverage electron spins for information processing offer a new frontier for ultra-low-power circuits and systems for beyond-CMOS technology.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"691-691"},"PeriodicalIF":0.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00119-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-transfer torque magnetoresistive random access memory technology status and future directions 自旋转移力矩磁阻随机存取存储器技术现状与未来发展方向
Pub Date : 2024-11-06 DOI: 10.1038/s44287-024-00111-z
Daniel C. Worledge, Guohan Hu
Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is a non-volatile memory technology with a unique combination of speed, endurance, density and ease of fabrication, which has enabled it to recently replace embedded Flash as the embedded non-volatile memory of choice for advanced applications, including automotive microcontroller units. In this Review, we describe the working principles of STT-MRAM, and provide a brief history of its development. We then discuss the requirements, product status and outlook for four key STT-MRAM applications: stand-alone, embedded non-volatile memory, non-volatile working memory and last-level cache. Finally, we review potential future directions beyond STT-MRAM, including spin–orbit torque MRAM (SOT-MRAM) and voltage control of magnetic anisotropy MRAM (VCMA-MRAM), with an emphasis on their technological potential. Spin-transfer torque magnetoresistive random access memory (STT-MRAM) has recently replaced embedded Flash as the embedded non-volatile memory of choice for advanced applications. This Review discusses STT-MRAM history, operation, application requirements, product status and potential future directions.
自旋转移力矩磁阻随机存取存储器(STT-MRAM)是一种非易失性存储器技术,集速度、耐用性、密度和易制造性于一身,最近已取代嵌入式闪存,成为包括汽车微控制器单元在内的高级应用中首选的嵌入式非易失性存储器。在本综述中,我们将介绍 STT-MRAM 的工作原理,并简要介绍其发展历史。然后,我们讨论了 STT-MRAM 四种关键应用的要求、产品状态和前景:独立式、嵌入式非易失性存储器、非易失性工作存储器和末级高速缓存。最后,我们回顾了 STT-MRAM 以外的潜在未来发展方向,包括自旋轨道转矩 MRAM(SOT-MRAM)和磁各向异性电压控制 MRAM(VCMA-MRAM),并重点介绍了它们的技术潜力。自旋转移力矩磁阻随机存取存储器(STT-MRAM)最近已取代嵌入式闪存,成为先进应用中首选的嵌入式非易失性存储器。本综述讨论了 STT-MRAM 的历史、运行、应用要求、产品状态和潜在的未来发展方向。
{"title":"Spin-transfer torque magnetoresistive random access memory technology status and future directions","authors":"Daniel C. Worledge, Guohan Hu","doi":"10.1038/s44287-024-00111-z","DOIUrl":"10.1038/s44287-024-00111-z","url":null,"abstract":"Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is a non-volatile memory technology with a unique combination of speed, endurance, density and ease of fabrication, which has enabled it to recently replace embedded Flash as the embedded non-volatile memory of choice for advanced applications, including automotive microcontroller units. In this Review, we describe the working principles of STT-MRAM, and provide a brief history of its development. We then discuss the requirements, product status and outlook for four key STT-MRAM applications: stand-alone, embedded non-volatile memory, non-volatile working memory and last-level cache. Finally, we review potential future directions beyond STT-MRAM, including spin–orbit torque MRAM (SOT-MRAM) and voltage control of magnetic anisotropy MRAM (VCMA-MRAM), with an emphasis on their technological potential. Spin-transfer torque magnetoresistive random access memory (STT-MRAM) has recently replaced embedded Flash as the embedded non-volatile memory of choice for advanced applications. This Review discusses STT-MRAM history, operation, application requirements, product status and potential future directions.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"730-747"},"PeriodicalIF":0.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perpendicularly magnetized materials for energy-efficient orbitronics 用于高能效轨道电子学的垂直磁化材料
Pub Date : 2024-10-29 DOI: 10.1038/s44287-024-00120-y
Olga Bubnova
An article in Nature Communications presents the orbital torque switching in light metal Zr systems with perpendicular magnetic anisotropy ferromagnetic materials.
自然-通讯》(Nature Communications)上的一篇文章介绍了具有垂直磁各向异性铁磁材料的轻金属 Zr 系统中的轨道转矩切换。
{"title":"Perpendicularly magnetized materials for energy-efficient orbitronics","authors":"Olga Bubnova","doi":"10.1038/s44287-024-00120-y","DOIUrl":"10.1038/s44287-024-00120-y","url":null,"abstract":"An article in Nature Communications presents the orbital torque switching in light metal Zr systems with perpendicular magnetic anisotropy ferromagnetic materials.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"699-699"},"PeriodicalIF":0.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spintronic neural systems 自旋电子神经系统
Pub Date : 2024-10-24 DOI: 10.1038/s44287-024-00107-9
Kaushik Roy, Cheng Wang, Sourjya Roy, Anand Raghunathan, Kezhou Yang, Abhronil Sengupta
Neural computing, guided by brain-inspired computational frameworks, promises to realize various cognitive and perception-related tasks. Complementary metal–oxide–semiconductor-based computing machines use orders-of-magnitude more computational resources than the brain on cognitive tasks that humans efficiently perform every day. As a result, we are witnessing a seismic shift in the field of computation. Research efforts are being directed to develop artificial intelligence (AI) hardware that mimics the human brain from a bottom-up perspective — through devices that are more naturally suited to neural computation — and thereby improves the efficiency of performing cognitive tasks. In the attempt to bridge the gap between neuroscience and electronics, here we report on developments in the field of spintronic devices for AI hardware. The dynamics of spintronic devices that can be used for the realization of neural and synaptic functionalities are discussed. A cross-layer perspective extending from the device to the circuit and system levels as a pathway towards efficient neural computing systems is also presented. Spintronic devices for artificial intelligence hardware can bridge the gap between neuroscience and electronics. Here we discuss the dynamics of such devices, enabling neural and synaptic functionalities, alongside a cross-layer approach — from devices to circuits and systems — for efficient neural computing systems.
在大脑启发计算框架的指导下,神经计算有望实现各种认知和感知相关任务。与大脑相比,基于互补金属氧化物半导体的计算机器在人类每天高效执行的认知任务中使用的计算资源要多出几个数量级。因此,我们正在目睹计算领域发生的巨大变化。目前的研究方向是开发人工智能(AI)硬件,从自下而上的角度--通过更适合神经计算的设备--模仿人脑,从而提高执行认知任务的效率。为了缩小神经科学与电子学之间的差距,我们在此报告人工智能硬件自旋电子器件领域的发展情况。我们讨论了可用于实现神经和突触功能的自旋电子器件的动态。此外,还介绍了从器件到电路和系统层面的跨层视角,以此作为实现高效神经计算系统的途径。用于人工智能硬件的自旋电子器件可以弥补神经科学与电子学之间的差距。在此,我们讨论了此类器件的动态特性,以及实现神经和突触功能的跨层方法--从器件到电路和系统--以实现高效的神经计算系统。
{"title":"Spintronic neural systems","authors":"Kaushik Roy, Cheng Wang, Sourjya Roy, Anand Raghunathan, Kezhou Yang, Abhronil Sengupta","doi":"10.1038/s44287-024-00107-9","DOIUrl":"10.1038/s44287-024-00107-9","url":null,"abstract":"Neural computing, guided by brain-inspired computational frameworks, promises to realize various cognitive and perception-related tasks. Complementary metal–oxide–semiconductor-based computing machines use orders-of-magnitude more computational resources than the brain on cognitive tasks that humans efficiently perform every day. As a result, we are witnessing a seismic shift in the field of computation. Research efforts are being directed to develop artificial intelligence (AI) hardware that mimics the human brain from a bottom-up perspective — through devices that are more naturally suited to neural computation — and thereby improves the efficiency of performing cognitive tasks. In the attempt to bridge the gap between neuroscience and electronics, here we report on developments in the field of spintronic devices for AI hardware. The dynamics of spintronic devices that can be used for the realization of neural and synaptic functionalities are discussed. A cross-layer perspective extending from the device to the circuit and system levels as a pathway towards efficient neural computing systems is also presented. Spintronic devices for artificial intelligence hardware can bridge the gap between neuroscience and electronics. Here we discuss the dynamics of such devices, enabling neural and synaptic functionalities, alongside a cross-layer approach — from devices to circuits and systems — for efficient neural computing systems.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"714-729"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-dimensional characterization of skyrmions 天幕的三维特征
Pub Date : 2024-10-24 DOI: 10.1038/s44287-024-00118-6
Silvia Conti
An article in Science Advances presents the three-dimensional characterization of magnetic skyrmions using soft X-ray laminoghraphy.
科学进展》(Science Advances)杂志上的一篇文章介绍了利用软 X 射线层析成像技术对磁性天幕进行三维表征的情况。
{"title":"Three-dimensional characterization of skyrmions","authors":"Silvia Conti","doi":"10.1038/s44287-024-00118-6","DOIUrl":"10.1038/s44287-024-00118-6","url":null,"abstract":"An article in Science Advances presents the three-dimensional characterization of magnetic skyrmions using soft X-ray laminoghraphy.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"698-698"},"PeriodicalIF":0.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spintronics for achieving system-level energy-efficient logic 实现系统级高能效逻辑的自旋电子学
Pub Date : 2024-10-15 DOI: 10.1038/s44287-024-00103-z
Jean Anne C. Incorvia, T. Patrick Xiao, Nicholas Zogbi, Azad Naeemi, Christoph Adelmann, Francky Catthoor, Mehdi Tahoori, Fèlix Casanova, Markus Becherer, Guillaume Prenat, Sebastien Couet
The demand for data processing in high-performance computing is growing rapidly. Extrapolating these trends to the long term suggests that a switch, which is more energy-efficient than a silicon complementary metal-oxide semiconductor (CMOS) switch, is necessary to support future computing needs. Spintronic logic, which encodes information using spin and magnetism, can theoretically provide an energy-efficient switch; however, it is less mature than CMOS logic and has yet to be realized at the level of a full processor system, thus warranting an informed review of spintronic logic technologies with guidelines for future research directions. In this Review, we contextualize spintronic logic within the broader goals of beyond-CMOS computing. We then provide an overview of five types of spintronic logic, discussing the operating principles, advantages, advancements and challenges of each type. We highlight that future research in spintronic logic should focus on the realization of low-voltage operation, transparent benchmarking for application-level tasks, development of computing architectures that exploit unique features of spintronics such as non-volatility and high endurance, and adaptation of spintronic logic to circuits usable for both computing and memory. This Review provides motivation and direction for high-risk, high-reward research in spintronic logic that should be pursued in parallel with the CMOS road map. This Review showcases the research progress and prospects of spintronic logic, which encodes information using spin and magnetism. Focusing on five exemplary types, we discuss the promise, challenges and future research directions in the context of high-performance computing needs.
高性能计算对数据处理的需求正在迅速增长。将这些趋势推断到长期来看,需要一种比硅互补金属氧化物半导体(CMOS)开关更节能的开关来支持未来的计算需求。利用自旋和磁性对信息进行编码的自旋电子逻辑理论上可以提供一种高能效开关;但是,它不如 CMOS 逻辑成熟,而且尚未在完整处理器系统的层面上实现,因此需要对自旋电子逻辑技术 进行翔实的回顾,并为未来的研究方向提供指导。在这篇综述中,我们将把自旋电子逻辑与超越CMOS计算的更广泛目标联系起来。然后,我们概述了五种类型的自旋电子逻辑,讨论了每种类型的工作原理、优势、进步和挑战。我们强调,未来的自旋电子逻辑研究应重点关注实现低电压运行、应用级任务的透明基准、开发可利用自旋电子独特功能(如非挥发性和高耐用性)的计算架构,以及将自旋电子逻辑调整为可用于计算和存储器的电路。本综述为高风险、高回报的自旋电子逻辑研究提供了动力和方向,这些研究应与 CMOS 路线图同步进行。本综述展示了利用自旋和磁性编码信息的自旋电子逻辑的研究进展和前景。我们以五种典型类型为重点,讨论了高性能计算所需的前景、挑战和未来研究方向。
{"title":"Spintronics for achieving system-level energy-efficient logic","authors":"Jean Anne C. Incorvia, T. Patrick Xiao, Nicholas Zogbi, Azad Naeemi, Christoph Adelmann, Francky Catthoor, Mehdi Tahoori, Fèlix Casanova, Markus Becherer, Guillaume Prenat, Sebastien Couet","doi":"10.1038/s44287-024-00103-z","DOIUrl":"10.1038/s44287-024-00103-z","url":null,"abstract":"The demand for data processing in high-performance computing is growing rapidly. Extrapolating these trends to the long term suggests that a switch, which is more energy-efficient than a silicon complementary metal-oxide semiconductor (CMOS) switch, is necessary to support future computing needs. Spintronic logic, which encodes information using spin and magnetism, can theoretically provide an energy-efficient switch; however, it is less mature than CMOS logic and has yet to be realized at the level of a full processor system, thus warranting an informed review of spintronic logic technologies with guidelines for future research directions. In this Review, we contextualize spintronic logic within the broader goals of beyond-CMOS computing. We then provide an overview of five types of spintronic logic, discussing the operating principles, advantages, advancements and challenges of each type. We highlight that future research in spintronic logic should focus on the realization of low-voltage operation, transparent benchmarking for application-level tasks, development of computing architectures that exploit unique features of spintronics such as non-volatility and high endurance, and adaptation of spintronic logic to circuits usable for both computing and memory. This Review provides motivation and direction for high-risk, high-reward research in spintronic logic that should be pursued in parallel with the CMOS road map. This Review showcases the research progress and prospects of spintronic logic, which encodes information using spin and magnetism. Focusing on five exemplary types, we discuss the promise, challenges and future research directions in the context of high-performance computing needs.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"700-713"},"PeriodicalIF":0.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terahertz communication systems for real-world video transmission 用于真实世界视频传输的太赫兹通信系统
Pub Date : 2024-10-02 DOI: 10.1038/s44287-024-00109-7
Lishu Wu
An article in Nature Communications presents a terahertz communication system for real-world live video transmission applications.
自然-通讯》(Nature Communications)杂志上的一篇文章介绍了一种用于真实世界实时视频传输应用的太赫兹通讯系统。
{"title":"Terahertz communication systems for real-world video transmission","authors":"Lishu Wu","doi":"10.1038/s44287-024-00109-7","DOIUrl":"10.1038/s44287-024-00109-7","url":null,"abstract":"An article in Nature Communications presents a terahertz communication system for real-world live video transmission applications.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 10","pages":"638-638"},"PeriodicalIF":0.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spintronic foundation cells for large-scale integration 用于大规模集成的自旋电子基础单元
Pub Date : 2024-10-01 DOI: 10.1038/s44287-024-00106-w
Qiming Shao, Kevin Garello, Jianshi Tang
The convergence of spintronics and traditional semiconductor technology marks a critical juncture in the evolution of computing architectures, for which the development of foundation cells become indispensable. Here we discuss the current landscape of spintronics and propose a holistic co-design methodology to integrate spintronic devices into silicon platforms.
自旋电子学与传统半导体技术的融合标志着计算架构发展的关键时刻,为此,基础单元的开发变得不可或缺。在此,我们讨论了自旋电子学的现状,并提出了将自旋电子器件集成到硅平台的整体协同设计方法。
{"title":"Spintronic foundation cells for large-scale integration","authors":"Qiming Shao, Kevin Garello, Jianshi Tang","doi":"10.1038/s44287-024-00106-w","DOIUrl":"10.1038/s44287-024-00106-w","url":null,"abstract":"The convergence of spintronics and traditional semiconductor technology marks a critical juncture in the evolution of computing architectures, for which the development of foundation cells become indispensable. Here we discuss the current landscape of spintronics and propose a holistic co-design methodology to integrate spintronic devices into silicon platforms.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"694-695"},"PeriodicalIF":0.0,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges for automated face recognition systems 自动人脸识别系统面临的挑战
Pub Date : 2024-09-30 DOI: 10.1038/s44287-024-00094-x
Christoph Busch
Face recognition, as a process of the human visual system, analyses facial properties and contextual information such as body shape. Automated recognition replicates the human process and analyses a face image, which is typically acquired with a visible spectrum sensor. When dealing with automated operational systems, the quality of the captured face image is relevant as it affects the recognition accuracy. Thus, it is necessary to measure the utility of a face sample with both a quality score and complementary measures that can provide actionable feedback. This Perspective addresses challenges and discusses solutions for the optimization of biometric recognition systems specifically related to face image analysis. One of these challenges is the vulnerability to presentation attacks. Consequently, for reliable recognition in non-supervised environments, robust presentation attack detection is required. Moreover, biometric templates must be protected. Finally, acceptability of biometric systems requires fairness of the biometric algorithms and artificial neural networks used. Automated face recognition systems are widely adopted in different operational systems, ranging from authentication with smart personal devices to access control and forensics. This Perspective analyses the critical challenges and proposed solutions for the optimized use of these recognition systems.
人脸识别是人类视觉系统的一个过程,它分析面部特征和身体形状等背景信息。自动识别复制了人类的识别过程,并对人脸图像进行分析,而人脸图像通常是通过可见光谱传感器获取的。在处理自动操作系统时,捕捉到的人脸图像的质量与识别准确性息息相关。因此,有必要通过质量分数和可提供可操作反馈的补充措施来衡量人脸样本的效用。本视角探讨了优化生物识别系统所面临的挑战,并讨论了与人脸图像分析具体相关的解决方案。这些挑战之一是容易受到演示攻击。因此,要想在非监督环境下实现可靠的识别,就必须进行强大的呈现攻击检测。此外,生物识别模板必须受到保护。最后,生物识别系统的可接受性要求所使用的生物识别算法和人工神经网络具有公平性。自动人脸识别系统被广泛应用于不同的操作系统,从智能个人设备的身份验证到访问控制和取证。本视角分析了优化使用这些识别系统所面临的关键挑战并提出了解决方案。
{"title":"Challenges for automated face recognition systems","authors":"Christoph Busch","doi":"10.1038/s44287-024-00094-x","DOIUrl":"10.1038/s44287-024-00094-x","url":null,"abstract":"Face recognition, as a process of the human visual system, analyses facial properties and contextual information such as body shape. Automated recognition replicates the human process and analyses a face image, which is typically acquired with a visible spectrum sensor. When dealing with automated operational systems, the quality of the captured face image is relevant as it affects the recognition accuracy. Thus, it is necessary to measure the utility of a face sample with both a quality score and complementary measures that can provide actionable feedback. This Perspective addresses challenges and discusses solutions for the optimization of biometric recognition systems specifically related to face image analysis. One of these challenges is the vulnerability to presentation attacks. Consequently, for reliable recognition in non-supervised environments, robust presentation attack detection is required. Moreover, biometric templates must be protected. Finally, acceptability of biometric systems requires fairness of the biometric algorithms and artificial neural networks used. Automated face recognition systems are widely adopted in different operational systems, ranging from authentication with smart personal devices to access control and forensics. This Perspective analyses the critical challenges and proposed solutions for the optimized use of these recognition systems.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"748-757"},"PeriodicalIF":0.0,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Electrical Engineering
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1