{"title":"Spin-transfer torque magnetoresistive random access memory technology status and future directions","authors":"Daniel C. Worledge, Guohan Hu","doi":"10.1038/s44287-024-00111-z","DOIUrl":null,"url":null,"abstract":"Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is a non-volatile memory technology with a unique combination of speed, endurance, density and ease of fabrication, which has enabled it to recently replace embedded Flash as the embedded non-volatile memory of choice for advanced applications, including automotive microcontroller units. In this Review, we describe the working principles of STT-MRAM, and provide a brief history of its development. We then discuss the requirements, product status and outlook for four key STT-MRAM applications: stand-alone, embedded non-volatile memory, non-volatile working memory and last-level cache. Finally, we review potential future directions beyond STT-MRAM, including spin–orbit torque MRAM (SOT-MRAM) and voltage control of magnetic anisotropy MRAM (VCMA-MRAM), with an emphasis on their technological potential. Spin-transfer torque magnetoresistive random access memory (STT-MRAM) has recently replaced embedded Flash as the embedded non-volatile memory of choice for advanced applications. This Review discusses STT-MRAM history, operation, application requirements, product status and potential future directions.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 11","pages":"730-747"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00111-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Spin-transfer torque magnetoresistive random access memory (STT-MRAM) is a non-volatile memory technology with a unique combination of speed, endurance, density and ease of fabrication, which has enabled it to recently replace embedded Flash as the embedded non-volatile memory of choice for advanced applications, including automotive microcontroller units. In this Review, we describe the working principles of STT-MRAM, and provide a brief history of its development. We then discuss the requirements, product status and outlook for four key STT-MRAM applications: stand-alone, embedded non-volatile memory, non-volatile working memory and last-level cache. Finally, we review potential future directions beyond STT-MRAM, including spin–orbit torque MRAM (SOT-MRAM) and voltage control of magnetic anisotropy MRAM (VCMA-MRAM), with an emphasis on their technological potential. Spin-transfer torque magnetoresistive random access memory (STT-MRAM) has recently replaced embedded Flash as the embedded non-volatile memory of choice for advanced applications. This Review discusses STT-MRAM history, operation, application requirements, product status and potential future directions.