The Great Lakes Winter Grab: Limnological data from a multi‐institutional winter sampling campaign on the Laurentian Great Lakes

IF 5.1 2区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Letters Pub Date : 2024-11-12 DOI:10.1002/lol2.10447
Ge Pu, Krill Shchapov, Nolan J. T. Pearce, Kelly Bowen, Andrew Bramburger, Andrew Camilleri, Hunter Carrick, Justin D. Chaffin, William Cody, Maureen L. Coleman, Warren J. S. Currie, David C. Depew, Jonathan P. Doubek, Rachel Eveleth, Mark Fitzpatrick, Paul W. Glyshaw, Casey M. Godwin, R. Michael McKay, Mohiuddin Munawar, Heather Niblock, Maci Quintanilla, Michael Rennie, Matthew W. Sand, Kimberly J. Schraitle, Michael R. Twiss, Donald G. Uzarski, Henry A. Vanderploeg, Trista J. Vick‐Majors, Judy A. Westrick, Bridget A. Wheelock, Marguerite A. Xenopoulos, Arthur Zastepa, Ted Ozersky
{"title":"The Great Lakes Winter Grab: Limnological data from a multi‐institutional winter sampling campaign on the Laurentian Great Lakes","authors":"Ge Pu, Krill Shchapov, Nolan J. T. Pearce, Kelly Bowen, Andrew Bramburger, Andrew Camilleri, Hunter Carrick, Justin D. Chaffin, William Cody, Maureen L. Coleman, Warren J. S. Currie, David C. Depew, Jonathan P. Doubek, Rachel Eveleth, Mark Fitzpatrick, Paul W. Glyshaw, Casey M. Godwin, R. Michael McKay, Mohiuddin Munawar, Heather Niblock, Maci Quintanilla, Michael Rennie, Matthew W. Sand, Kimberly J. Schraitle, Michael R. Twiss, Donald G. Uzarski, Henry A. Vanderploeg, Trista J. Vick‐Majors, Judy A. Westrick, Bridget A. Wheelock, Marguerite A. Xenopoulos, Arthur Zastepa, Ted Ozersky","doi":"10.1002/lol2.10447","DOIUrl":null,"url":null,"abstract":"Interest in winter limnology is growing rapidly, but progress is hindered by a shortage of standardized multivariate datasets on winter conditions. Addressing the winter data gap will enhance our understanding of winter ecosystem function and of lake response to environmental change. Here, we describe a dataset generated by a multi‐institutional winter sampling campaign across all five Laurentian Great Lakes and some of their connecting waters (the Great Lakes Winter Grab). The objective of Winter Grab was to characterize mid‐winter limnological conditions in the Great Lakes using standard sample collection and analysis methods. Nineteen research groups sampled 49 locations varying widely in depth and trophic status, collecting a range of limnological data. This dataset includes physical, chemical, and biological measurements. These data can be used to examine diverse aspects of Great Lakes ecosystems or integrated with winter observations from other lakes to improve understanding of winter limnology across different aquatic systems.","PeriodicalId":18128,"journal":{"name":"Limnology and Oceanography Letters","volume":"72 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/lol2.10447","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Interest in winter limnology is growing rapidly, but progress is hindered by a shortage of standardized multivariate datasets on winter conditions. Addressing the winter data gap will enhance our understanding of winter ecosystem function and of lake response to environmental change. Here, we describe a dataset generated by a multi‐institutional winter sampling campaign across all five Laurentian Great Lakes and some of their connecting waters (the Great Lakes Winter Grab). The objective of Winter Grab was to characterize mid‐winter limnological conditions in the Great Lakes using standard sample collection and analysis methods. Nineteen research groups sampled 49 locations varying widely in depth and trophic status, collecting a range of limnological data. This dataset includes physical, chemical, and biological measurements. These data can be used to examine diverse aspects of Great Lakes ecosystems or integrated with winter observations from other lakes to improve understanding of winter limnology across different aquatic systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大湖冬季采集:来自劳伦森大湖多机构冬季采样活动的湖泊学数据
人们对冬季湖沼学的兴趣与日俱增,但由于缺乏有关冬季条件的标准化多变量数据集,研究进展受阻。解决冬季数据缺口问题将增强我们对冬季生态系统功能和湖泊对环境变化响应的理解。在此,我们将介绍一个由多个机构联合开展的冬季取样活动所产生的数据集,该活动横跨劳伦伦五大湖及其部分连接水域(五大湖冬季取样活动)。冬季取样活动的目的是采用标准的样本采集和分析方法来描述五大湖冬季的湖泊状况。19 个研究小组在深度和营养状态差异很大的 49 个地点取样,收集了一系列湖沼学数据。该数据集包括物理、化学和生物测量数据。这些数据可用于研究五大湖生态系统的不同方面,或与其他湖泊的冬季观测数据相结合,以加深对不同水生系统冬季湖沼学的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
3.80%
发文量
63
审稿时长
25 weeks
期刊介绍: Limnology and Oceanography Letters (LO-Letters) serves as a platform for communicating the latest innovative and trend-setting research in the aquatic sciences. Manuscripts submitted to LO-Letters are expected to present high-impact, cutting-edge results, discoveries, or conceptual developments across all areas of limnology and oceanography, including their integration. Selection criteria for manuscripts include their broad relevance to the field, strong empirical and conceptual foundations, succinct and elegant conclusions, and potential to advance knowledge in aquatic sciences.
期刊最新文献
Issue Information Capitalizing on the wealth of chemical data in the accretionary structures of aquatic taxa: Opportunities from across the tree of life The Great Lakes Winter Grab: Limnological data from a multi‐institutional winter sampling campaign on the Laurentian Great Lakes Disentangling effects of droughts and heatwaves on alpine periphyton communities: A mesocosm experiment Snow removal cools a small dystrophic lake
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1