Surabhi Shah, Jongmin Oh, Yoorim Bang, Soewoo Jung, Hwan-Cheol Kim, Kyoung Sook Jeong, Mi Hye Park, Kyung A. Lee, Jae-Hong Ryoo, Yi-Jun Kim, Sanghwan Song, Huibyeol Park, Eunhee Ha
{"title":"Pregnant women’s lifestyles and exposure to endocrine-disrupting chemicals: a machine learning approach","authors":"Surabhi Shah, Jongmin Oh, Yoorim Bang, Soewoo Jung, Hwan-Cheol Kim, Kyoung Sook Jeong, Mi Hye Park, Kyung A. Lee, Jae-Hong Ryoo, Yi-Jun Kim, Sanghwan Song, Huibyeol Park, Eunhee Ha","doi":"10.1016/j.envpol.2024.125309","DOIUrl":null,"url":null,"abstract":"Women have ubiquitous exposure to various endocrine disrupting chemicals (EDCs) present in personal care products, food packaging, and processing. Pregnancy is a phase of increased vulnerability to environmental stressors. Therefore, we aimed to identify questionnaire based variables of pregnant women’s lifestyle factors affecting the prenatal concentrations of EDCs: bis-phenol A (BPA), triclosan (TCS), parabens, and phthalates. We also aimed to explore the association between these lifestyle factors and EDC exposure in pregnant women in South Korea. This study is a part of Korean CHildren’s ENvironmental health Study (Ko-CHENS). The following lifestyle factors: usage of personal care products, eating habits, cooking practices, food storage practices, and chemical exposure were evaluated through questionnaire. We examined prenatal EDCs: phenols (BPA), TCS, parabens (MEP, ETP, and PRP), and phthalates (MEHHP, MEOHP, MECPP, MBZP, MCOP, MCPP, MCNP, and MNBP). The random forest and least absolute shrinkage and selection operator regression machine learning models were used to predict the important lifestyle factors affecting the prenatal EDC concentrations in pregnant women. Next, we calculated the lifestyle score and evaluated its association with prenatal EDCs, respectively. Our results show that pregnant women who used makeup [β: 1.01, 95% C.I.: 0.01,2.00] >6 times/week had a significant increase in early-pregnancy (EP) ΣParaben exposure. Using perfume up to 3 times/month was significantly associated with EP TCS exposure (β: 0.05, 95% C.I.: 0.01,0.23). While, using perfume >6 times/week was significantly associated to late-pregnancy (LP) ΣParaben exposure, and consuming cup noodles significantly increased LP ΣDEHP exposure. Linear model analysis showed that the lifestyle score significantly increased the EP (β: 0.24, 95% C.I.: 0.07,0.40) and LP (β:0.10, 95% C.I.: 0.01,0.20) ΣParaben exposure. Therefore, pregnant women’s lifestyle factors, such as using makeup and perfume and eating habits (e.g., cup noodle consumption), were associated with prenatal EDC exposure.","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"23 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.envpol.2024.125309","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Women have ubiquitous exposure to various endocrine disrupting chemicals (EDCs) present in personal care products, food packaging, and processing. Pregnancy is a phase of increased vulnerability to environmental stressors. Therefore, we aimed to identify questionnaire based variables of pregnant women’s lifestyle factors affecting the prenatal concentrations of EDCs: bis-phenol A (BPA), triclosan (TCS), parabens, and phthalates. We also aimed to explore the association between these lifestyle factors and EDC exposure in pregnant women in South Korea. This study is a part of Korean CHildren’s ENvironmental health Study (Ko-CHENS). The following lifestyle factors: usage of personal care products, eating habits, cooking practices, food storage practices, and chemical exposure were evaluated through questionnaire. We examined prenatal EDCs: phenols (BPA), TCS, parabens (MEP, ETP, and PRP), and phthalates (MEHHP, MEOHP, MECPP, MBZP, MCOP, MCPP, MCNP, and MNBP). The random forest and least absolute shrinkage and selection operator regression machine learning models were used to predict the important lifestyle factors affecting the prenatal EDC concentrations in pregnant women. Next, we calculated the lifestyle score and evaluated its association with prenatal EDCs, respectively. Our results show that pregnant women who used makeup [β: 1.01, 95% C.I.: 0.01,2.00] >6 times/week had a significant increase in early-pregnancy (EP) ΣParaben exposure. Using perfume up to 3 times/month was significantly associated with EP TCS exposure (β: 0.05, 95% C.I.: 0.01,0.23). While, using perfume >6 times/week was significantly associated to late-pregnancy (LP) ΣParaben exposure, and consuming cup noodles significantly increased LP ΣDEHP exposure. Linear model analysis showed that the lifestyle score significantly increased the EP (β: 0.24, 95% C.I.: 0.07,0.40) and LP (β:0.10, 95% C.I.: 0.01,0.20) ΣParaben exposure. Therefore, pregnant women’s lifestyle factors, such as using makeup and perfume and eating habits (e.g., cup noodle consumption), were associated with prenatal EDC exposure.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.