{"title":"Characterization of mRNA-LNP structural features and mechanisms for enhanced mRNA vaccine immunogenicity","authors":"Kangzeng Wu, Fengwei Xu, Yongchao Dai, Shanshan Jin, Anjie Zheng, Ning Zhang, Yuhong Xu","doi":"10.1016/j.jconrel.2024.11.007","DOIUrl":null,"url":null,"abstract":"Lipid nanoparticles (LNPs) used for nonviral gene delivery have achieved significant success, particularly in COVID-19 mRNA vaccines. LNPs are routinely characterized by their particle size, polydispersity, and mRNA loading efficiency. However, the internal structure of these particles has not been specified, despite evidence showing that LNPs can be highly heterogeneous, with variations in lipid composition and preparation methods. How these structural features contributed to mRNA LNP vaccine activities is also unclear. In this study, we prepared LNPs with distinctly different internal structures. They were named the emulsion-like LNPs (eLNPs) and membrane-rich LNPs (mLNPs) respectively and compared with the classic “bleb” structure LNPs (cLNPs). The eLNPs contained higher molar percent of the ionizable lipid and lower molar percent of DSPC and cholesterol. The different lipid organization structures lead to varying mRNA delivery activities in vitro and in vivo. After intramuscular injection, eLNPs remained at the injection site and expressed antigens locally. The resulted immune responses had a very fast onset (higher titer at week 2) and lasted longer and stronger (higher titers at week 8) than other LNPs (cLNPs and mLNPs). We hypothesize that the rapid onset and local expression of antigens by muscle cells in the eLNP groups may be favored by the antigen recognition and presentation process, despite the overall mRNA expression activities was not as high especially in liver and other organ. Our data support that eLNPs are potentially the more suitable delivery system for mRNA vaccine due to their high immunogenicity and low systemic toxicity.","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) used for nonviral gene delivery have achieved significant success, particularly in COVID-19 mRNA vaccines. LNPs are routinely characterized by their particle size, polydispersity, and mRNA loading efficiency. However, the internal structure of these particles has not been specified, despite evidence showing that LNPs can be highly heterogeneous, with variations in lipid composition and preparation methods. How these structural features contributed to mRNA LNP vaccine activities is also unclear. In this study, we prepared LNPs with distinctly different internal structures. They were named the emulsion-like LNPs (eLNPs) and membrane-rich LNPs (mLNPs) respectively and compared with the classic “bleb” structure LNPs (cLNPs). The eLNPs contained higher molar percent of the ionizable lipid and lower molar percent of DSPC and cholesterol. The different lipid organization structures lead to varying mRNA delivery activities in vitro and in vivo. After intramuscular injection, eLNPs remained at the injection site and expressed antigens locally. The resulted immune responses had a very fast onset (higher titer at week 2) and lasted longer and stronger (higher titers at week 8) than other LNPs (cLNPs and mLNPs). We hypothesize that the rapid onset and local expression of antigens by muscle cells in the eLNP groups may be favored by the antigen recognition and presentation process, despite the overall mRNA expression activities was not as high especially in liver and other organ. Our data support that eLNPs are potentially the more suitable delivery system for mRNA vaccine due to their high immunogenicity and low systemic toxicity.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.