Coupling pyroelectric fields and donor doping to adjust Curie temperature and band structure to access to highly efficient BaTiO3 photoelectrodes for dye degradation

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2024-11-13 DOI:10.1016/j.apsusc.2024.161779
Mei Ma, Mengnan Ruan, Bo Li, Yuedan Zhang, Yuxin Sun, Ke Ruan, Xiaowei Liu
{"title":"Coupling pyroelectric fields and donor doping to adjust Curie temperature and band structure to access to highly efficient BaTiO3 photoelectrodes for dye degradation","authors":"Mei Ma, Mengnan Ruan, Bo Li, Yuedan Zhang, Yuxin Sun, Ke Ruan, Xiaowei Liu","doi":"10.1016/j.apsusc.2024.161779","DOIUrl":null,"url":null,"abstract":"Utilizing the pyroelectric and photoelectric properties of ferroelectric semiconductors for pollutant degradation represents an emerging, clean, and sustainable dye degradation technology. However, conventional modification methods, such as defect/morphology engineering and cocatalyst loading, can only incrementally enhance the structural and electronic states of materials to improve their catalytic performance. This study demonstrates that in pyro-photoelectrocatalysis, by introducing isovalent lanthanide ions into BaTiO<sub>3</sub> fundamentally reduces the Curie temperature (Tc) of BaTiO<sub>3</sub>, thereby significantly enhancing the pyroelectric performance of Ba<sub>1−x</sub>La<sub>x</sub>TiO<sub>3</sub> at room temperature. Furthermore, we also confirm that the introduction of heterovalent ions alters the grain size, meanwhile, we verify the change in the band structure of BaTiO<sub>3</sub> through Mott-Schottky plot and UV–visible absorption date. With an x value of 0.2, under the synergistic effect of thermal and photoelectric catalysis, the degradation efficiency for Rhodamine B (RhB) is optimal, reaching 98.8 % within 60 min. Additionally, the pyro-photoelectrocatalysis measured under 1.23 V shows that Ba<sub>0.8</sub>La<sub>0.2</sub>TiO<sub>3</sub> (0.073 mA/cm<sup>2</sup>) exhibits a pyro-photoelectrocatalysis current 1.6 times higher than that of pure BaTiO<sub>3</sub>(0.048 mA/cm<sup>2</sup>), this research provides a viable method for designing electrodes with superior pyro-photoelectrocatalysis performance.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"63 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2024.161779","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing the pyroelectric and photoelectric properties of ferroelectric semiconductors for pollutant degradation represents an emerging, clean, and sustainable dye degradation technology. However, conventional modification methods, such as defect/morphology engineering and cocatalyst loading, can only incrementally enhance the structural and electronic states of materials to improve their catalytic performance. This study demonstrates that in pyro-photoelectrocatalysis, by introducing isovalent lanthanide ions into BaTiO3 fundamentally reduces the Curie temperature (Tc) of BaTiO3, thereby significantly enhancing the pyroelectric performance of Ba1−xLaxTiO3 at room temperature. Furthermore, we also confirm that the introduction of heterovalent ions alters the grain size, meanwhile, we verify the change in the band structure of BaTiO3 through Mott-Schottky plot and UV–visible absorption date. With an x value of 0.2, under the synergistic effect of thermal and photoelectric catalysis, the degradation efficiency for Rhodamine B (RhB) is optimal, reaching 98.8 % within 60 min. Additionally, the pyro-photoelectrocatalysis measured under 1.23 V shows that Ba0.8La0.2TiO3 (0.073 mA/cm2) exhibits a pyro-photoelectrocatalysis current 1.6 times higher than that of pure BaTiO3(0.048 mA/cm2), this research provides a viable method for designing electrodes with superior pyro-photoelectrocatalysis performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将热释电场和供体掺杂耦合起来,调整居里温度和能带结构,从而获得用于染料降解的高效 BaTiO3 光电极
利用铁电半导体的热释电和光电特性降解污染物是一种新兴、清洁和可持续的染料降解技术。然而,传统的改性方法,如缺陷/形态工程和助催化剂负载,只能逐步增强材料的结构和电子状态,以提高其催化性能。本研究证明,在热释光电催化中,通过在 BaTiO3 中引入异价镧系离子,从根本上降低了 BaTiO3 的居里温度(Tc),从而显著提高了 Ba1-xLaxTiO3 在室温下的热释光电性能。此外,我们还证实了异价离子的引入改变了晶粒尺寸,同时通过莫特-肖特基图和紫外-可见吸收日期验证了 BaTiO3 带状结构的变化。当 x 值为 0.2 时,在热催化和光电催化的协同作用下,罗丹明 B(RhB)的降解效率达到最佳,在 60 分钟内降解率达到 98.8%。此外,在 1.23 V 电压下进行的热释光电催化实验表明,Ba0.8La0.2TiO3(0.073 mA/cm2)的热释光电催化电流是纯 BaTiO3(0.048 mA/cm2)的 1.6 倍,这项研究为设计具有优异热释光电催化性能的电极提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Ultrathin Ti3C2Tx MXene/Cellulose nanofiber composite film for enhanced mechanics & EMI shielding via freeze-thaw intercalation In-situ homologous bromine vacancies for enhanced C-Br bond activation and rapid debromination of decabromodiphenyl ether Oxygen vacancies-promoted oxidative esterification of ethylene glycol to methyl glycolate over Au/ZnO catalyst Photocatalytic dye removal with ZnO/Laser-Induced graphene nanocomposite Corrigendum to “A comparative nanotribological investigation on amorphous and polycrystalline forms of MoS2” [Appl. Surf. Sci. 672 (2024) 16042]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1