{"title":"Empirical Likelihood in Functional Data Analysis","authors":"Hsin-wen Chang, Ian W. McKeague","doi":"10.1146/annurev-statistics-112723-034225","DOIUrl":null,"url":null,"abstract":"Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"60 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-112723-034225","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Functional data analysis (FDA) studies data that include infinite-dimensional functions or objects, generalizing traditional univariate or multivariate observations from each study unit. Among inferential approaches without parametric assumptions, empirical likelihood (EL) offers a principled method in that it extends the framework of parametric likelihood ratio–based inference via the nonparametric likelihood. There has been increasing use of EL in FDA due to its many favorable properties, including self-normalization and the data-driven shape of confidence regions. This article presents a review of EL approaches in FDA, starting with finite-dimensional features, then covering infinite-dimensional features. We contrast smooth and nonsmooth frameworks in FDA and show how EL has been incorporated into both of them. The article concludes with a discussion of some future research directions, including the possibility of applying EL to conformal inference.
功能数据分析(FDA)研究包括无限维函数或对象的数据,从每个研究单元概括传统的单变量或多变量观察结果。在没有参数假设的推论方法中,经验似然法(EL)提供了一种原则性方法,它通过非参数似然法扩展了基于参数似然比的推论框架。由于 EL 具有许多有利特性,包括自归一化和置信区的数据驱动形状,因此在 FDA 中的应用越来越多。本文综述了 EL 在 FDA 中的应用,从有限维特征开始,然后涵盖无限维特征。我们对比了 FDA 中的平滑框架和非平滑框架,并展示了 EL 如何融入这两种框架。文章最后讨论了一些未来的研究方向,包括将 EL 应用于保形推理的可能性。
期刊介绍:
The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.