Ultrafine Ruthenium Nanoparticles Anchored on S,N-Codoped Carbon Nanofibers for H2 and Electricity Coproduction

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-13 DOI:10.1021/acssuschemeng.4c07973
Yaxin Lai, Lvlv Ji, Jianying Wang, Jiangnan Shen, Junbin Liao, Xiaoyang He, Tao Wang, Zuofeng Chen, Sheng Wang
{"title":"Ultrafine Ruthenium Nanoparticles Anchored on S,N-Codoped Carbon Nanofibers for H2 and Electricity Coproduction","authors":"Yaxin Lai, Lvlv Ji, Jianying Wang, Jiangnan Shen, Junbin Liao, Xiaoyang He, Tao Wang, Zuofeng Chen, Sheng Wang","doi":"10.1021/acssuschemeng.4c07973","DOIUrl":null,"url":null,"abstract":"The development of an energy-saving hydrogen (H<sub>2</sub>) production system and efficient electrocatalysts is of high importance but challenging. Herein, we report the rational design and synthesis of ultrafine ruthenium (Ru) nanoparticles <i>in situ</i> anchored on S,N-codoped carbon nanofibers (Ru@SNCNFs) by an electrospinning-assisted method. For both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), Ru@SNCNFs demonstrate superior catalytic performances compared to a 20% Pt/C catalyst and most Ru-based catalysts in literatures. When Ru@SNCNFs are applied as bifunctional electrocatalysts, an asymmetric fuel cell is constructed by integrating HER in 0.5 M H<sub>2</sub>SO<sub>4</sub> and HzOR in 1 M KOH and 0.5 M N<sub>2</sub>H<sub>4</sub>. Remarkably, it achieves simultaneously H<sub>2</sub> and electricity coproduction by further harvesting the electrochemical neutralization energy. Density functional theory calculations rationalize the metal–support interaction with electron transfer from Ru nanoparticles to S,N-codoped carbon matrix, therefore modifying the binding characteristics of intermediates toward the intrinsic activity enhancement.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07973","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of an energy-saving hydrogen (H2) production system and efficient electrocatalysts is of high importance but challenging. Herein, we report the rational design and synthesis of ultrafine ruthenium (Ru) nanoparticles in situ anchored on S,N-codoped carbon nanofibers (Ru@SNCNFs) by an electrospinning-assisted method. For both the hydrogen evolution reaction (HER) and hydrazine oxidation reaction (HzOR), Ru@SNCNFs demonstrate superior catalytic performances compared to a 20% Pt/C catalyst and most Ru-based catalysts in literatures. When Ru@SNCNFs are applied as bifunctional electrocatalysts, an asymmetric fuel cell is constructed by integrating HER in 0.5 M H2SO4 and HzOR in 1 M KOH and 0.5 M N2H4. Remarkably, it achieves simultaneously H2 and electricity coproduction by further harvesting the electrochemical neutralization energy. Density functional theory calculations rationalize the metal–support interaction with electron transfer from Ru nanoparticles to S,N-codoped carbon matrix, therefore modifying the binding characteristics of intermediates toward the intrinsic activity enhancement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锚定在 S、N-掺杂碳纳米纤维上的超细钌纳米粒子用于生产 H2 和电能
开发节能型氢气(H2)生产系统和高效电催化剂非常重要,但也极具挑战性。在此,我们报告了通过电纺丝辅助方法原位锚定在 S,N-掺杂碳纳米纤维(Ru@SNCNFs)上的超细钌(Ru)纳米粒子的合理设计与合成。在氢气进化反应(HER)和肼氧化反应(HzOR)中,Ru@SNCNFs 的催化性能优于 20% Pt/C 催化剂和大多数文献中的 Ru 基催化剂。将 Ru@SNCNFs 用作双功能电催化剂时,通过将 HER 和 HzOR 分别整合到 0.5 M H2SO4 和 1 M KOH 及 0.5 M N2H4 中,构建了一种不对称燃料电池。值得注意的是,它通过进一步收集电化学中和能量,同时实现了 H2 和电力的共生。密度泛函理论计算合理地解释了金属与支持物之间的相互作用,电子从 Ru 纳米粒子转移到 S、N-掺杂碳基质,从而改变了中间产物的结合特性,提高了内在活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Modulating Coordination Environment of Cobalt-Based Spinel Octahedral Metal Sites to Boost Metal–Oxygen Bond Covalency for Reversible Lithium–Oxygen Batteries Facile Green Production of Chitin Nanomaterials from Shrimp Shell Chitin Using Recyclable Maleic Acid and Microwave Irradiation Efficient Preparation of Metallic Bismuth from Pressure-Leaching Residue of Bismuth Sulfide Concentrate Ultrafine Ruthenium Nanoparticles Anchored on S,N-Codoped Carbon Nanofibers for H2 and Electricity Coproduction Multi-Stage Stochastic Programming Under Endogenous Uncertainty of Integrated Sustainable Chemical Process Design and Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1