CBMAFF-Net: An Intelligent NMR-Based Nontargeted Screening Method for New Psychoactive Substances

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2024-11-13 DOI:10.1021/acs.analchem.4c03008
Xiaoshan Zheng, Boyi Tang, Peng Xu, Youmei Wang, Bin Di, Zhendong Hua, Mengxiang Su, Jun Liao
{"title":"CBMAFF-Net: An Intelligent NMR-Based Nontargeted Screening Method for New Psychoactive Substances","authors":"Xiaoshan Zheng, Boyi Tang, Peng Xu, Youmei Wang, Bin Di, Zhendong Hua, Mengxiang Su, Jun Liao","doi":"10.1021/acs.analchem.4c03008","DOIUrl":null,"url":null,"abstract":"With the proliferation and rapid evolution of new psychoactive substances (NPSs), traditional database-based search methods face increasing challenges in identifying NPS seizures with complex compositions, thereby complicating their regulation and early warning. To address this issue, CBMAFF-Net (CNN BiLSTM Multistep Attentional Feature Fusion Network) is proposed as an intelligent screening method to rapidly classify unknown confiscated substances using <sup>13</sup>C nuclear magnetic resonance (NMR) and <sup>1</sup>H NMR data. Initially, we utilize the synergy of a convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM) to extract the global and local features of the NMR data. These features are sequentially fused through a weighted approach guided by an attention mechanism, thoroughly capturing the essential NPS information. We evaluated the model on a generated simulated data set, where it performed with 99.8% accuracy and a 99.8% F1 score. Additionally, testing on 42 actual seizure cases yielded a recognition accuracy of 97.6%, significantly surpassing the performance of conventional database-based similarity search algorithms. These findings suggest that the proposed method holds substantial promise for the rapid screening and classification of NPSs.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c03008","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation and rapid evolution of new psychoactive substances (NPSs), traditional database-based search methods face increasing challenges in identifying NPS seizures with complex compositions, thereby complicating their regulation and early warning. To address this issue, CBMAFF-Net (CNN BiLSTM Multistep Attentional Feature Fusion Network) is proposed as an intelligent screening method to rapidly classify unknown confiscated substances using 13C nuclear magnetic resonance (NMR) and 1H NMR data. Initially, we utilize the synergy of a convolutional neural network (CNN) and bidirectional long short-term memory network (BiLSTM) to extract the global and local features of the NMR data. These features are sequentially fused through a weighted approach guided by an attention mechanism, thoroughly capturing the essential NPS information. We evaluated the model on a generated simulated data set, where it performed with 99.8% accuracy and a 99.8% F1 score. Additionally, testing on 42 actual seizure cases yielded a recognition accuracy of 97.6%, significantly surpassing the performance of conventional database-based similarity search algorithms. These findings suggest that the proposed method holds substantial promise for the rapid screening and classification of NPSs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CBMAFF-Net:基于核磁共振的新型精神活性物质非靶向智能筛选方法
随着新精神活性物质(NPS)的激增和快速演变,传统的基于数据库的搜索方法在识别成分复杂的 NPS 缉获物方面面临越来越大的挑战,从而使其监管和预警工作变得更加复杂。为解决这一问题,我们提出了一种智能筛选方法--CBMAFF-Net(CNN BiLSTM 多步注意力特征融合网络),利用 13C 核磁共振(NMR)和 1H NMR 数据对未知没收物质进行快速分类。首先,我们利用卷积神经网络(CNN)和双向长短期记忆网络(BiLSTM)的协同作用,提取核磁共振数据的全局和局部特征。在注意力机制的引导下,这些特征通过加权方法依次融合,从而彻底捕捉到核动力源的基本信息。我们在生成的模拟数据集上对该模型进行了评估,其准确率为 99.8%,F1 分数为 99.8%。此外,在 42 个实际发作病例上进行测试后,识别准确率达到 97.6%,大大超过了传统的基于数据库的相似性搜索算法。这些研究结果表明,所提出的方法在快速筛查和分类非典型肺炎方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Dual-Locked Chemiluminescent Probe Enables Precise Imaging and Timely Diagnosis of Colitis via Chymotrypsin/Vanin-1 Cascade Activation Single-Molecule Detection of Serum MicroRNAs for Medulloblastoma with Biphasic Sandwich Hybridization-Assisted Plasmonic Resonant Scattering Imaging CBMAFF-Net: An Intelligent NMR-Based Nontargeted Screening Method for New Psychoactive Substances Adding More Shape to Nanoscale Reference Materials─LiYF4:Yb,Tm Bipyramids as Standards for Sizing Methods and Particle Number Concentration Hydrovoltaic–Photoelectric Coupling Strategy Triggered a Robust Output Signal for High-Performance Self-Powered Electrochemical Sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1