Kelsey Smyth, Shuyao Tan, Tim Van Seters, Vimy Henderson, Elodie Passeport, Jennifer Drake
{"title":"Pavement Wear Generates Microplastics in Stormwater Runoff","authors":"Kelsey Smyth, Shuyao Tan, Tim Van Seters, Vimy Henderson, Elodie Passeport, Jennifer Drake","doi":"10.1016/j.jhazmat.2024.136495","DOIUrl":null,"url":null,"abstract":"Tire and road wear particles are a major source of microplastics to urban stormwater. They are composed of hetero-aggregates of abraded tire and pavement particles that are difficult to distinguish. While tire wear is a known source of microplastics, little is known on the contribution of pavement wear. This two-year field study with complementary lab testing evaluates the effects of pavement degradation on microplastic generation in stormwater from different pavement types: asphalt, concrete, and recycled rubber pavers. Pavement specimens from each site were collected and underwent degradation testing. We directly demonstrated that pavement wear is a source of microplastics in stormwater separate from tire wear. We showed that the rubber pavement released the most microplastics in lab testing, suggesting that the formulation of such novel recycled-tire pavers must undergo thorough testing before wide application. The asphalt pavement was the most susceptible to rutting and released the most microplastics in the field, including a large proportion of tire wear particles. Both land-use and pavement surface characteristics influenced microplastic generation. These results demonstrate the need to consider microplastic generation during pavement material selection and mitigate the spread of microplastics from pavement wear to nearby environments.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136495","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tire and road wear particles are a major source of microplastics to urban stormwater. They are composed of hetero-aggregates of abraded tire and pavement particles that are difficult to distinguish. While tire wear is a known source of microplastics, little is known on the contribution of pavement wear. This two-year field study with complementary lab testing evaluates the effects of pavement degradation on microplastic generation in stormwater from different pavement types: asphalt, concrete, and recycled rubber pavers. Pavement specimens from each site were collected and underwent degradation testing. We directly demonstrated that pavement wear is a source of microplastics in stormwater separate from tire wear. We showed that the rubber pavement released the most microplastics in lab testing, suggesting that the formulation of such novel recycled-tire pavers must undergo thorough testing before wide application. The asphalt pavement was the most susceptible to rutting and released the most microplastics in the field, including a large proportion of tire wear particles. Both land-use and pavement surface characteristics influenced microplastic generation. These results demonstrate the need to consider microplastic generation during pavement material selection and mitigate the spread of microplastics from pavement wear to nearby environments.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.