{"title":"Composite Gel Polymer Electrolyte for High-Performance Flexible Zinc-Air Batteries","authors":"Yifan Liu, Denise Bildan, Xiangqun Zhuge, Tong Liu, Haoyang Zhong, Zhihong Luo, Hanhui Lei, Kun Luo, Yurong Ren, Maryam Bayati, Xiaoteng Liu","doi":"10.1002/smll.202408015","DOIUrl":null,"url":null,"abstract":"Enhancing ionic conductivity and electrolyte uptake is of significance for gel polymer electrolytes (GPEs) for flexible zinc-air batteries (FZABs). Herein, a composite mesoporous silica/polyacrylamide (5 wt.% mPAM) GPE is constructed with comparable ionic conductivity to aqueous electrolytes, where the ionic conductivity is up to 337 mS cm<sup>−1</sup>, and the weight loss after exposing in air 72 h is less than 18%, owing to the excellent electrolyte uptake and continuous ion migration network provided by the mesoporous silica fillers. When used as a quasi-solid-electrolyte, the rechargeable FZAB exhibited high electrochemical performance and structural stability, where the peak power density is up to 162.8 mW cm<sup>−2</sup>, and the initial charge–discharge potential gap is as low as 0.62 V, resulting in a long lifespan exceeding 110 h, showcasing the combination of high durability, cost-effectiveness and easy production for practical applications.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408015","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Enhancing ionic conductivity and electrolyte uptake is of significance for gel polymer electrolytes (GPEs) for flexible zinc-air batteries (FZABs). Herein, a composite mesoporous silica/polyacrylamide (5 wt.% mPAM) GPE is constructed with comparable ionic conductivity to aqueous electrolytes, where the ionic conductivity is up to 337 mS cm−1, and the weight loss after exposing in air 72 h is less than 18%, owing to the excellent electrolyte uptake and continuous ion migration network provided by the mesoporous silica fillers. When used as a quasi-solid-electrolyte, the rechargeable FZAB exhibited high electrochemical performance and structural stability, where the peak power density is up to 162.8 mW cm−2, and the initial charge–discharge potential gap is as low as 0.62 V, resulting in a long lifespan exceeding 110 h, showcasing the combination of high durability, cost-effectiveness and easy production for practical applications.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.