Regulating Optoelectronic and Thermoelectric Properties of Organic Semiconductors by Heavy Atom Effects

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-13 DOI:10.1002/smll.202405156
Hao He, Ziting Zhong, Peng Fan, Wenchao Zhao, Dafei Yuan
{"title":"Regulating Optoelectronic and Thermoelectric Properties of Organic Semiconductors by Heavy Atom Effects","authors":"Hao He, Ziting Zhong, Peng Fan, Wenchao Zhao, Dafei Yuan","doi":"10.1002/smll.202405156","DOIUrl":null,"url":null,"abstract":"Heavy atom effects can be used to enhance intermolecular interaction, regulate quinoidal resonance properties, increase bandwidths, and tune diradical characters, which have significant impacts on organic optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), etc. Meanwhile, the introduction of heavy atoms is shown to promote charge transfer, enhance air stability, and improve device performances in the field of organic thermoelectrics (OTEs). Thus, heavy atom effects are receiving more and more attention. However, regulating heavy atoms in organic semiconductors is still meeting great challenges. For example, heavy atoms will lead to solubility and stability issues (tellurium substitution) and lack of versatile design strategy and effective synthetic methods to be incorporated into organic semiconductors, which limit their application in electronic devices. Therefore, this work timely summarizes the unique functionalities of heavy atom effects, and up-to-date progress in organic electronics including OFETs, OPVs, OLEDs, and OTEs, while the structure-performance relationships between molecular designs and electronic devices are clearly elucidated. Furthermore, this review systematically analyzes the remaining challenges in regulating heavy atoms within organic semiconductors, and design strategies toward efficient and stable organic semiconductors by the introduction of novel heavy atoms regulation are proposed.","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405156","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heavy atom effects can be used to enhance intermolecular interaction, regulate quinoidal resonance properties, increase bandwidths, and tune diradical characters, which have significant impacts on organic optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), organic photovoltaics (OPVs), etc. Meanwhile, the introduction of heavy atoms is shown to promote charge transfer, enhance air stability, and improve device performances in the field of organic thermoelectrics (OTEs). Thus, heavy atom effects are receiving more and more attention. However, regulating heavy atoms in organic semiconductors is still meeting great challenges. For example, heavy atoms will lead to solubility and stability issues (tellurium substitution) and lack of versatile design strategy and effective synthetic methods to be incorporated into organic semiconductors, which limit their application in electronic devices. Therefore, this work timely summarizes the unique functionalities of heavy atom effects, and up-to-date progress in organic electronics including OFETs, OPVs, OLEDs, and OTEs, while the structure-performance relationships between molecular designs and electronic devices are clearly elucidated. Furthermore, this review systematically analyzes the remaining challenges in regulating heavy atoms within organic semiconductors, and design strategies toward efficient and stable organic semiconductors by the introduction of novel heavy atoms regulation are proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重原子效应调节有机半导体的光电和热电特性
重原子效应可用于增强分子间相互作用、调节醌共振特性、增加带宽和调整二叉特性,这对有机场效应晶体管(OFET)、有机发光二极管(OLED)、有机光伏(OPV)等有机光电器件具有重要影响。同时,在有机热电(OTE)领域,重原子的引入被证明可以促进电荷转移、增强空气稳定性并改善器件性能。因此,重原子效应正受到越来越多的关注。然而,有机半导体中重离子的调控仍面临巨大挑战。例如,重原子会导致溶解性和稳定性问题(碲的替代),缺乏将其纳入有机半导体的多功能设计策略和有效合成方法,从而限制了其在电子器件中的应用。因此,本研究及时总结了重原子效应的独特功能,以及包括 OFET、OPV、OLED 和 OTE 在内的有机电子学的最新进展,同时清晰地阐明了分子设计与电子器件之间的结构-性能关系。此外,本综述还系统分析了有机半导体中重金属原子调控所面临的挑战,并提出了通过引入新型重金属原子调控来实现高效稳定有机半导体的设计策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications Phage Display Against 2D Metal–Organic Nanosheets as a New Route to Highly Selective Biomolecular Recognition Surfaces Composite Gel Polymer Electrolyte for High-Performance Flexible Zinc-Air Batteries Regulating Optoelectronic and Thermoelectric Properties of Organic Semiconductors by Heavy Atom Effects Cell Adhesion and Local Cytokine Control on Protein-Functionalized PNIPAM-co-AAc Hydrogel Microcarriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1