{"title":"Comprehensive study of matcha foam formation: Physicochemical composition analysis and mechanisms impacting foaming properties","authors":"Wei Chen, Jiayi Chen, Zixin Ni, Wangjing Wu, Junjie Dong, Zi Wang, Yuefei Wang, Jihong Zhou","doi":"10.1016/j.foodchem.2024.142009","DOIUrl":null,"url":null,"abstract":"Tea foam is crucial for new food and drink innovations. This study examined nine types and grades of matcha, identifying Longjing 43 as a high-quality raw material for matcha with good foaming properties. Foam scanning, particle electrophoresis and biochemical analysis revealed that pH (≈6.0), catechins (such as EGCG), amino acids (such as valine), pectin, soluble proteins and lipids enhanced foam formation. These components affected matcha's foaming through inter-component complexation, hydrophobic interaction of groups and intermolecular hydrogen bonds. EGCG had the greatest impact on foaming ability (1.89-fold), while amino acids primarily stabilized the foam. At the molecular level, phenolic hydroxyl groups close to each other promoted foaming, whereas alcoholic hydroxyl groups had the opposite effect. Phenol (5.17-fold) and n-propanol (8.03-fold) were the most effective foam promoters among phenols and alcohols. This study enhances our understanding of tea foam's biochemical mechanisms, driving innovation in food and beverage products.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142009","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Tea foam is crucial for new food and drink innovations. This study examined nine types and grades of matcha, identifying Longjing 43 as a high-quality raw material for matcha with good foaming properties. Foam scanning, particle electrophoresis and biochemical analysis revealed that pH (≈6.0), catechins (such as EGCG), amino acids (such as valine), pectin, soluble proteins and lipids enhanced foam formation. These components affected matcha's foaming through inter-component complexation, hydrophobic interaction of groups and intermolecular hydrogen bonds. EGCG had the greatest impact on foaming ability (1.89-fold), while amino acids primarily stabilized the foam. At the molecular level, phenolic hydroxyl groups close to each other promoted foaming, whereas alcoholic hydroxyl groups had the opposite effect. Phenol (5.17-fold) and n-propanol (8.03-fold) were the most effective foam promoters among phenols and alcohols. This study enhances our understanding of tea foam's biochemical mechanisms, driving innovation in food and beverage products.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture