Role of red beetroot in bread for reducing mycotoxin risks: Bioavailability of beetroot polyphenols and betalains with ochratoxin a, aflatoxin B1 and zearalenone in Caco-2 cells
Llorens Paula, Juan-García Ana, Pakkanen Hannu, Moltó Juan Carlos, Vehniäinen Eeva-Riikka, Juan Cristina
{"title":"Role of red beetroot in bread for reducing mycotoxin risks: Bioavailability of beetroot polyphenols and betalains with ochratoxin a, aflatoxin B1 and zearalenone in Caco-2 cells","authors":"Llorens Paula, Juan-García Ana, Pakkanen Hannu, Moltó Juan Carlos, Vehniäinen Eeva-Riikka, Juan Cristina","doi":"10.1016/j.foodchem.2024.142036","DOIUrl":null,"url":null,"abstract":"The interaction between dietary bioactive compounds and mycotoxins in food safety is crucial due to the potential health risks raised by mycotoxins and the protective functions of bioactive substances. This study is focused on red beetroot (<em>Beta vulgaris</em>), a rich source of polyphenols and betalains, incorporated into a daily consumption food such as bread, to examine its effects on the bioavailability of mycotoxins using an <em>in vitro</em> Caco-2 cell model. This study investigates how these compounds affect the bioavailability of mycotoxins, specifically ochratoxin A (OTA), aflatoxin B1 (AFB1), and zearalenone (ZEA), which are known to compromise intestinal barrier function and nutrient absorption. Additionally, bioaccesibility and bioavailability of total betalains (betacyanins and betaxanthins) (TBC) and polyphenols (TPC) content was evaluated. The beetroot-enriched breads were subjected to an <em>in vitro</em> digestion process, followed by a transepithelial transport assay to assess the bioavailability in differentiated Caco-2 cells. Results indicate an increase in the bioaccesibility of TBC and TPC (up to 99 % and 27 %, respectively) during digestion, suggesting enhanced absorption and protective effects against mycotoxin-induced damage. The presence of beetroot bread polyphenols and betalains increased the bioavailability of mycotoxins, with complex interactions observed, particularly in triple mycotoxin's combination. The results highlight the complex interactions between dietary components and mycotoxins' bioavailability, underlining the importance of further research into their mechanisms of action and potential applications in food safety and nutrition.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between dietary bioactive compounds and mycotoxins in food safety is crucial due to the potential health risks raised by mycotoxins and the protective functions of bioactive substances. This study is focused on red beetroot (Beta vulgaris), a rich source of polyphenols and betalains, incorporated into a daily consumption food such as bread, to examine its effects on the bioavailability of mycotoxins using an in vitro Caco-2 cell model. This study investigates how these compounds affect the bioavailability of mycotoxins, specifically ochratoxin A (OTA), aflatoxin B1 (AFB1), and zearalenone (ZEA), which are known to compromise intestinal barrier function and nutrient absorption. Additionally, bioaccesibility and bioavailability of total betalains (betacyanins and betaxanthins) (TBC) and polyphenols (TPC) content was evaluated. The beetroot-enriched breads were subjected to an in vitro digestion process, followed by a transepithelial transport assay to assess the bioavailability in differentiated Caco-2 cells. Results indicate an increase in the bioaccesibility of TBC and TPC (up to 99 % and 27 %, respectively) during digestion, suggesting enhanced absorption and protective effects against mycotoxin-induced damage. The presence of beetroot bread polyphenols and betalains increased the bioavailability of mycotoxins, with complex interactions observed, particularly in triple mycotoxin's combination. The results highlight the complex interactions between dietary components and mycotoxins' bioavailability, underlining the importance of further research into their mechanisms of action and potential applications in food safety and nutrition.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture