Promoted formation of pyrazines by targeted precursor addition to improve aroma of thermally processed methionine-glucose Amadori compound

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Biomaterials Science & Engineering Pub Date : 2024-11-13 DOI:10.1016/j.foodchem.2024.142033
Shibin Deng, Heping Cui, Shahzad Hussain, Khizar Hayat, Wei Liu, Xiaoming Zhang, Chi-Tang Ho
{"title":"Promoted formation of pyrazines by targeted precursor addition to improve aroma of thermally processed methionine-glucose Amadori compound","authors":"Shibin Deng, Heping Cui, Shahzad Hussain, Khizar Hayat, Wei Liu, Xiaoming Zhang, Chi-Tang Ho","doi":"10.1016/j.foodchem.2024.142033","DOIUrl":null,"url":null,"abstract":"The methionine/glucose (Met/Glc) and methionine/glucose-derived Amadori rearrangement product (MG-ARP) models were established to analyze their differences in flavor profiles and aroma potentiality. The principal component analysis revealed the advantage of MG-ARP in the formation of low temperature-induced processing flavor. MG-ARP exhibited superior potential in the rapid formation and high intensity of processed flavor than the Met/Glc except for the inefficiency in pyrazine production. The extra-added Glc tended to react with recovered Met to compete against α-dicarbonyl compounds to suppress the Strecker degradation and pyrazine formation. The additional Met effectively improved the precursor availability and facilitated the conversion of C<sub>6</sub>-α-dicarbonyl compounds to short-chained α-dicarbonyl compounds for pyrazine formation rather than their dehydration and cyclization to generate furans. The oxidation of Met favored the nonoxidative carbohydrate degradation leading to MGO formation and the aldolization of dihydropyrazines, which synergistically enriched the varieties of pyrazines, especially for the promoted formation of long-chain substituted pyrazines.","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2024.142033","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The methionine/glucose (Met/Glc) and methionine/glucose-derived Amadori rearrangement product (MG-ARP) models were established to analyze their differences in flavor profiles and aroma potentiality. The principal component analysis revealed the advantage of MG-ARP in the formation of low temperature-induced processing flavor. MG-ARP exhibited superior potential in the rapid formation and high intensity of processed flavor than the Met/Glc except for the inefficiency in pyrazine production. The extra-added Glc tended to react with recovered Met to compete against α-dicarbonyl compounds to suppress the Strecker degradation and pyrazine formation. The additional Met effectively improved the precursor availability and facilitated the conversion of C6-α-dicarbonyl compounds to short-chained α-dicarbonyl compounds for pyrazine formation rather than their dehydration and cyclization to generate furans. The oxidation of Met favored the nonoxidative carbohydrate degradation leading to MGO formation and the aldolization of dihydropyrazines, which synergistically enriched the varieties of pyrazines, especially for the promoted formation of long-chain substituted pyrazines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过定向添加前体促进吡嗪的形成,改善热加工蛋氨酸-葡萄糖 Amadori 化合物的香气
建立了蛋氨酸/葡萄糖(Met/Glc)和蛋氨酸/葡萄糖衍生阿莫多利重排产物(MG-ARP)模型,以分析它们在风味特征和香味潜力方面的差异。主成分分析表明,MG-ARP 在形成低温诱导的加工风味方面具有优势。与 Met/Glc 相比,MG-ARP 在快速形成高浓度加工风味方面表现出更大的潜力,但吡嗪生成效率较低。额外添加的 Glc 往往会与回收的 Met 发生反应,与 α-二羰基化合物竞争,从而抑制 Strecker 降解和吡嗪的形成。额外添加的 Met 有效地提高了前体的可用性,促进了 C6-α 二羰基化合物向短链 α 二羰基化合物的转化,从而形成吡嗪,而不是脱水和环化生成呋喃。Met 的氧化作用有利于非氧化性碳水化合物降解,导致 MGO 的形成和二氢吡嗪的醛化,从而协同丰富了吡嗪的种类,特别是促进了长链取代吡嗪的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
期刊最新文献
Corrigendum to "Janus hydrogel loaded with a CO2-generating chemical reaction system: Construction, characterization, and application in fruit and vegetable preservation" [Food Chemistry 458 (2024) 140271]. Comprehensive physicochemical indicators analysis and quality evaluation model construction for the post-harvest ripening rapeseeds. Evaluation of passive samplers as a cost-effective method to predict the impact of wildfire smoke in grapes and wines. Heat-induced interactions between microfluidized hemp protein particles and caseins or whey proteins. Natural α-glucosidase inhibitors from Aquilaria sinensis leaf-tea: Targeted bio-affinity screening, identification, and inhibition mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1