Yuqi Bao, Jie Zeng, Yintai Xu, Guanshui Xie, Hang Hu, Xia Lei, Deng Wang, Jiyao Zhang, Wenbo Peng, Zhixin Liu, Peide Zhu, Geping Qu, Longbin Qiu, Lei Yan, Yong Zhang, Xingzhu Wang, Baomin Xu
{"title":"Dual-Site Anchors Enabling Vertical Molecular Orientation for Efficient All-Perovskite Tandem Solar Cells","authors":"Yuqi Bao, Jie Zeng, Yintai Xu, Guanshui Xie, Hang Hu, Xia Lei, Deng Wang, Jiyao Zhang, Wenbo Peng, Zhixin Liu, Peide Zhu, Geping Qu, Longbin Qiu, Lei Yan, Yong Zhang, Xingzhu Wang, Baomin Xu","doi":"10.1002/aenm.202403186","DOIUrl":null,"url":null,"abstract":"All-perovskite tandem solar cells (TSCs) are gaining increasing attention due to their potential to surpass the efficiency limit of single-junction solar cells. However, as the bottom low-bandgap subcells, tin-lead (Sn-Pb) perovskites suffer from severe nonradiative recombination at the interfaces due to their susceptibility to oxidation and poor crystalline morphology. Here a surface modifier 4-(trifluoromethyl)benzhydrazide (TFH) is reported to construct a reductive chemical environment on the surface of perovskite films and protect them from water and oxygen erosion. TFH anchors onto the Sn-Pb perovskites in a preferred vertical orientation through dual-site binding, forming interface dipoles that facilitate charge extraction. The reductive hydrazine groups of TFH can effectively inhibit the oxidation of Sn<sup>2+</sup> and I<sup>−</sup>, thereby reducing the defect density and energy disorder of Sn─Pb perovskites. Consequently, the TFH-treated devices achieved a champion PCE of 22.88%, maintaining over 93% of the initial efficiency after continuous one-sun illumination for 500 h. Combined with a 1.79 eV wide-bandgap subcell, it has demonstrated a PCE of 28.17% in all-perovskite TSCs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"29 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403186","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-perovskite tandem solar cells (TSCs) are gaining increasing attention due to their potential to surpass the efficiency limit of single-junction solar cells. However, as the bottom low-bandgap subcells, tin-lead (Sn-Pb) perovskites suffer from severe nonradiative recombination at the interfaces due to their susceptibility to oxidation and poor crystalline morphology. Here a surface modifier 4-(trifluoromethyl)benzhydrazide (TFH) is reported to construct a reductive chemical environment on the surface of perovskite films and protect them from water and oxygen erosion. TFH anchors onto the Sn-Pb perovskites in a preferred vertical orientation through dual-site binding, forming interface dipoles that facilitate charge extraction. The reductive hydrazine groups of TFH can effectively inhibit the oxidation of Sn2+ and I−, thereby reducing the defect density and energy disorder of Sn─Pb perovskites. Consequently, the TFH-treated devices achieved a champion PCE of 22.88%, maintaining over 93% of the initial efficiency after continuous one-sun illumination for 500 h. Combined with a 1.79 eV wide-bandgap subcell, it has demonstrated a PCE of 28.17% in all-perovskite TSCs.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.