Angus Pedersen, Rifael Z. Snitkoff-Sol, Yan Presman, Laetitia Dubau, Rongsheng Cai, Jesús Barrio, Sarah J. Haigh, Frédéric Maillard, Ifan E. L. Stephens, Maria-Magdalena Titirici, Lior Elbaz
{"title":"Fe-N-C in Proton Exchange Membrane Fuel Cells: Impact of Ionomer Loading on Degradation and Stability","authors":"Angus Pedersen, Rifael Z. Snitkoff-Sol, Yan Presman, Laetitia Dubau, Rongsheng Cai, Jesús Barrio, Sarah J. Haigh, Frédéric Maillard, Ifan E. L. Stephens, Maria-Magdalena Titirici, Lior Elbaz","doi":"10.1002/aenm.202403920","DOIUrl":null,"url":null,"abstract":"Fe single atoms in N-doped C (Fe-N-C) present the most promising replacement for carbon-supported Pt-based catalysts for the O<sub>2</sub> reduction reaction at the cathode of proton exchange membrane fuel cells (PEMFCs). However, it remains unclear how the I/C ratio affects Fe-N-C degradation and the stability of single Fe atom active sites (FeN<sub>x</sub>). Here, an accelerated stress test (AST) protocol is combined with emerging electrochemical techniques for a porous Fe-N-C in PEMFC with a range of I/C ratios. The PEMFC current density degradation rates are found to be comparable; however, with increased I/C ratio the additional FeN<sub>x</sub> sites accessed are more stable, as shown by their higher active site stability number (electrons passed per FeN<sub>x</sub> lost) at the end of the AST protocol. Meanwhile, the initial rate of TOF decay is suppressed with increasing I/C. Electrochemical process changes are studied via distribution of relaxation times analysis. Minor changes in H<sup>+</sup> and O<sub>2</sub> transport resistance at low current density prove kinetic degradation dominants at high potentials. These findings demonstrate how electrochemical techniques can be combined with stability metrics to determine and deconvolute changes from the active site to device level electrochemical processes in PEMFCs.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"6 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202403920","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe single atoms in N-doped C (Fe-N-C) present the most promising replacement for carbon-supported Pt-based catalysts for the O2 reduction reaction at the cathode of proton exchange membrane fuel cells (PEMFCs). However, it remains unclear how the I/C ratio affects Fe-N-C degradation and the stability of single Fe atom active sites (FeNx). Here, an accelerated stress test (AST) protocol is combined with emerging electrochemical techniques for a porous Fe-N-C in PEMFC with a range of I/C ratios. The PEMFC current density degradation rates are found to be comparable; however, with increased I/C ratio the additional FeNx sites accessed are more stable, as shown by their higher active site stability number (electrons passed per FeNx lost) at the end of the AST protocol. Meanwhile, the initial rate of TOF decay is suppressed with increasing I/C. Electrochemical process changes are studied via distribution of relaxation times analysis. Minor changes in H+ and O2 transport resistance at low current density prove kinetic degradation dominants at high potentials. These findings demonstrate how electrochemical techniques can be combined with stability metrics to determine and deconvolute changes from the active site to device level electrochemical processes in PEMFCs.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.