The Reduced Barrier for the Photogenerated Charge Migration on Covalent Triazine-Based Frameworks for Boosting Photocatalytic CO2 Reduction Into Syngas
Ke Kong, Hong Zhong, Fushuai Zhang, Haowei Lv, Xiaoju Li, Ruihu Wang
{"title":"The Reduced Barrier for the Photogenerated Charge Migration on Covalent Triazine-Based Frameworks for Boosting Photocatalytic CO2 Reduction Into Syngas","authors":"Ke Kong, Hong Zhong, Fushuai Zhang, Haowei Lv, Xiaoju Li, Ruihu Wang","doi":"10.1002/adfm.202417109","DOIUrl":null,"url":null,"abstract":"Photocatalytic CO<sub>2</sub> reduction together with hydrogen generation is a promising approach to generate syngas, the photogenerated electron migration from photosensitizers to the catalytic active sites is the rate-determining step. Herein, an integrative strategy is presented by covalently grafting metal complexes into donor–acceptor covalent triazine-based frameworks. The catalytic active sites are integrated with the photosensitizer units by covalent linkages to form an extended <i>π</i>-conjugated framework, which significantly reduces the energy barrier for the migration of the photogenerated charge carriers, resulting in high activity and durability in photocatalytic CO<sub>2</sub> reduction into syngas under visible light irradiation. The CO and H<sub>2</sub> evolution amounts in 1.5 h are 1086 and 1042 µmol g<sup>−1</sup>, respectively, which greatly surpass those in the host-guest counterparts. Furthermore, selective adsorption for CO<sub>2</sub> over N<sub>2</sub> renders this photocatalytic system to be effective for syngas production from the simulated flue gas. This study provides new approaches to construct the integrative photocatalytic systems for solar-to-chemical energy conversion.","PeriodicalId":18,"journal":{"name":"ACS Macro Letters","volume":"95 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Macro Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic CO2 reduction together with hydrogen generation is a promising approach to generate syngas, the photogenerated electron migration from photosensitizers to the catalytic active sites is the rate-determining step. Herein, an integrative strategy is presented by covalently grafting metal complexes into donor–acceptor covalent triazine-based frameworks. The catalytic active sites are integrated with the photosensitizer units by covalent linkages to form an extended π-conjugated framework, which significantly reduces the energy barrier for the migration of the photogenerated charge carriers, resulting in high activity and durability in photocatalytic CO2 reduction into syngas under visible light irradiation. The CO and H2 evolution amounts in 1.5 h are 1086 and 1042 µmol g−1, respectively, which greatly surpass those in the host-guest counterparts. Furthermore, selective adsorption for CO2 over N2 renders this photocatalytic system to be effective for syngas production from the simulated flue gas. This study provides new approaches to construct the integrative photocatalytic systems for solar-to-chemical energy conversion.
期刊介绍:
ACS Macro Letters publishes research in all areas of contemporary soft matter science in which macromolecules play a key role, including nanotechnology, self-assembly, supramolecular chemistry, biomaterials, energy generation and storage, and renewable/sustainable materials. Submissions to ACS Macro Letters should justify clearly the rapid disclosure of the key elements of the study. The scope of the journal includes high-impact research of broad interest in all areas of polymer science and engineering, including cross-disciplinary research that interfaces with polymer science.
With the launch of ACS Macro Letters, all Communications that were formerly published in Macromolecules and Biomacromolecules will be published as Letters in ACS Macro Letters.