Marius Sandru, Marie Prache, Thomas Macron, Lidia Căta, Mehmet Göktuğ Ahunbay, May-Britt Hägg, Guillaume Maurin, Mihail Barboiu
{"title":"Rubbery organic frameworks (ROFs) toward ultrapermeable CO2-selective membranes","authors":"Marius Sandru, Marie Prache, Thomas Macron, Lidia Căta, Mehmet Göktuğ Ahunbay, May-Britt Hägg, Guillaume Maurin, Mihail Barboiu","doi":"10.1126/sciadv.adq5024","DOIUrl":null,"url":null,"abstract":"<div >The capture of CO<sub>2</sub> is of high interest in our society representing an essential tool to mitigate man-made climate warming. Membrane technology applied for CO<sub>2</sub> capture offers several advantages in terms of energy savings, simple operation, and easy scale-up. Glassy membranes are associated with low gas permeability that negatively affect on their industrial implementation. Oppositely, rubbery membranes offer high permeability, but their selectivity is low. Here we report rubbery organic frameworks (ROFs) combining the high permeability of soft matrices with the high sieving selectivity of molecular frameworks. The best performing membranes provide a CO<sub>2</sub>/N<sub>2</sub> selectivity up to 104 with a CO<sub>2</sub> permeability up to 1000 Barrer, representing relevant performances for industrial implementation. Water vapors have a positive effect on CO<sub>2</sub> permeability, and the CO<sub>2</sub>/N<sub>2</sub> selectivity is higher than in dry conditions, as most of CO<sub>2</sub> gas emissions are present in fully humidified gas streams. The synergetic high permeability/selectivity performances are superior to that observed with current state-of-the-art polymeric membranes.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 46","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adq5024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq5024","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The capture of CO2 is of high interest in our society representing an essential tool to mitigate man-made climate warming. Membrane technology applied for CO2 capture offers several advantages in terms of energy savings, simple operation, and easy scale-up. Glassy membranes are associated with low gas permeability that negatively affect on their industrial implementation. Oppositely, rubbery membranes offer high permeability, but their selectivity is low. Here we report rubbery organic frameworks (ROFs) combining the high permeability of soft matrices with the high sieving selectivity of molecular frameworks. The best performing membranes provide a CO2/N2 selectivity up to 104 with a CO2 permeability up to 1000 Barrer, representing relevant performances for industrial implementation. Water vapors have a positive effect on CO2 permeability, and the CO2/N2 selectivity is higher than in dry conditions, as most of CO2 gas emissions are present in fully humidified gas streams. The synergetic high permeability/selectivity performances are superior to that observed with current state-of-the-art polymeric membranes.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.