Kathleen E. Mandt, Jacob Lustig-Yaeger, Adrienn Luspay-Kuti, Peter Wurz, Dennis Bodewits, Stephen A. Fuselier, Olivier Mousis, Steven M. Petrinec, Karlheinz J. Trattner
{"title":"A nearly terrestrial D/H for comet 67P/Churyumov-Gerasimenko","authors":"Kathleen E. Mandt, Jacob Lustig-Yaeger, Adrienn Luspay-Kuti, Peter Wurz, Dennis Bodewits, Stephen A. Fuselier, Olivier Mousis, Steven M. Petrinec, Karlheinz J. Trattner","doi":"10.1126/sciadv.adp2191","DOIUrl":null,"url":null,"abstract":"<div >Cometary comae are a mixture of gas and ice-covered dust. Processing on the surface and in the coma change the composition of ice on dust grains relative to that of the nucleus. As the ice on dust grains sublimates, the local coma composition changes. Rosetta observations of 67P/Churyumov-Gerasimenko previously reported one of the highest D/H values for a comet. However, reanalysis of more than 4000 water isotope measurements over the full mission shows that dust markedly increases local D/H. The isotope ratio measured at a distance from the nucleus where the gas is well mixed is close to terrestrial, like that of other Jupiter family comets. This lower D/H has implications for understanding comet formation and the role of comets in delivering water to Earth.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp2191","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp2191","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cometary comae are a mixture of gas and ice-covered dust. Processing on the surface and in the coma change the composition of ice on dust grains relative to that of the nucleus. As the ice on dust grains sublimates, the local coma composition changes. Rosetta observations of 67P/Churyumov-Gerasimenko previously reported one of the highest D/H values for a comet. However, reanalysis of more than 4000 water isotope measurements over the full mission shows that dust markedly increases local D/H. The isotope ratio measured at a distance from the nucleus where the gas is well mixed is close to terrestrial, like that of other Jupiter family comets. This lower D/H has implications for understanding comet formation and the role of comets in delivering water to Earth.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.