Kevin Murzyn, Maarten L. S. van der Geest, Leo Guery, Zhonghui Nie, Pieter van Essen, Stefan Witte, Peter M. Kraus
{"title":"Breaking Abbe’s diffraction limit with harmonic deactivation microscopy","authors":"Kevin Murzyn, Maarten L. S. van der Geest, Leo Guery, Zhonghui Nie, Pieter van Essen, Stefan Witte, Peter M. Kraus","doi":"10.1126/sciadv.adp3056","DOIUrl":null,"url":null,"abstract":"<div >Nonlinear optical microscopy provides elegant means for label-free imaging of biological samples and condensed matter systems. The widespread areas of application could even be increased if resolution was improved, which the famous Abbe diffraction limit now restrains. Super-resolution techniques can break the diffraction limit but most rely on fluorescent labeling. This makes them incompatible with (sub)femtosecond temporal resolution and applications that demand the absence of labeling. Here, we introduce harmonic deactivation microscopy (HADES) for breaking the diffraction limit in nonfluorescent samples. By controlling the harmonic generation process on the quantum level with a second donut-shaped pulse, we confine the third-harmonic generation to three times below the original focus size of a scanning microscope. We demonstrate that resolution improvement by deactivation is more efficient for higher harmonic orders and only limited by the maximum applicable deactivation-pulse fluence. This provides a route toward sub-100-nanometer resolution in a regular nonlinear microscope.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adp3056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adp3056","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear optical microscopy provides elegant means for label-free imaging of biological samples and condensed matter systems. The widespread areas of application could even be increased if resolution was improved, which the famous Abbe diffraction limit now restrains. Super-resolution techniques can break the diffraction limit but most rely on fluorescent labeling. This makes them incompatible with (sub)femtosecond temporal resolution and applications that demand the absence of labeling. Here, we introduce harmonic deactivation microscopy (HADES) for breaking the diffraction limit in nonfluorescent samples. By controlling the harmonic generation process on the quantum level with a second donut-shaped pulse, we confine the third-harmonic generation to three times below the original focus size of a scanning microscope. We demonstrate that resolution improvement by deactivation is more efficient for higher harmonic orders and only limited by the maximum applicable deactivation-pulse fluence. This provides a route toward sub-100-nanometer resolution in a regular nonlinear microscope.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.