Ultrasound Guided Local Delivery of Bioorthogonal PDL1 Degrader for Enhanced Immunotherapy.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-07 DOI:10.1002/smll.202405549
Lantian Wang, Zhaoyou Liu, Panpan Ji, Jiao Ma, Ke Mou, Tian Zhou, Yuan Liang, Bin Zhang, Mengying Wei, Guodong Yang, Wenqi Sun, Li Gong, Lijun Yuan
{"title":"Ultrasound Guided Local Delivery of Bioorthogonal PDL1 Degrader for Enhanced Immunotherapy.","authors":"Lantian Wang, Zhaoyou Liu, Panpan Ji, Jiao Ma, Ke Mou, Tian Zhou, Yuan Liang, Bin Zhang, Mengying Wei, Guodong Yang, Wenqi Sun, Li Gong, Lijun Yuan","doi":"10.1002/smll.202405549","DOIUrl":null,"url":null,"abstract":"<p><p>Immunotherapy involving PDL1 degradation holds great potential in anti-tumor treatment. Optimal design of PDL1 degraders and subsequent efficient delivery into tumors are essential for expected efficacy, especially when abnormal tumor vasculature is considered. Herein, a nanodroplet-based novel drug delivery platform termed as NDs<sup>mTx</sup> (nanodroplet-based therapeutics) for ultrasound targeted delivery of PDL1 degrader is designed. Briefly, the shell of the NDs<sup>mTx</sup> is armed with RGD and mPD1 (a bioorthogonal PD1 mutant produced by genetic codon expansion technology can covalently bind PDL1), and the core is composed of perfluorohexane (PFH, C6F14). The RGD on the NDs<sup>mTx</sup> recognizes αvβ3 expressed by tumor vasculature, making NDs<sup>mTx</sup> accumulated in tumor practical and visible by low-frequency ultrasound (LFUS). In turn, inertial cavitation induced by LFUS facilitates mPD1 on the nanodroplet debris penetrating the tumor, where mPD1 covalently binds PDL1 and initiates a lysosomal degradation process. Through both in vitro and in vivo study, the superior performance of NDs<sup>mTx</sup> in degrading PDL1 and boosting anti-tumor immunity is confirmed. In conclusion, NDs<sup>mTx</sup> emerge as an alternative to existing PDL1 blockers in tumor immunotherapy.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2405549"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202405549","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Immunotherapy involving PDL1 degradation holds great potential in anti-tumor treatment. Optimal design of PDL1 degraders and subsequent efficient delivery into tumors are essential for expected efficacy, especially when abnormal tumor vasculature is considered. Herein, a nanodroplet-based novel drug delivery platform termed as NDsmTx (nanodroplet-based therapeutics) for ultrasound targeted delivery of PDL1 degrader is designed. Briefly, the shell of the NDsmTx is armed with RGD and mPD1 (a bioorthogonal PD1 mutant produced by genetic codon expansion technology can covalently bind PDL1), and the core is composed of perfluorohexane (PFH, C6F14). The RGD on the NDsmTx recognizes αvβ3 expressed by tumor vasculature, making NDsmTx accumulated in tumor practical and visible by low-frequency ultrasound (LFUS). In turn, inertial cavitation induced by LFUS facilitates mPD1 on the nanodroplet debris penetrating the tumor, where mPD1 covalently binds PDL1 and initiates a lysosomal degradation process. Through both in vitro and in vivo study, the superior performance of NDsmTx in degrading PDL1 and boosting anti-tumor immunity is confirmed. In conclusion, NDsmTx emerge as an alternative to existing PDL1 blockers in tumor immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超声引导下局部输送生物正交 PDL1 降解剂以增强免疫疗法。
涉及 PDL1 降解的免疫疗法在抗肿瘤治疗中具有巨大潜力。PDL1降解剂的优化设计以及随后向肿瘤的高效递送对于预期疗效至关重要,尤其是在考虑到肿瘤血管异常的情况下。本文设计了一种基于纳米微滴的新型药物递送平台,称为 NDsmTx(基于纳米微滴的疗法),用于 PDL1 降解剂的超声靶向递送。简而言之,NDsmTx 的外壳由 RGD 和 mPD1(通过基因密码子扩增技术产生的生物正交 PD1 突变体,可与 PDL1 共价结合)组成,核心由全氟己烷(PFH,C6F14)构成。NDsmTx 上的 RGD 可识别肿瘤血管中表达的 αvβ3,从而使 NDsmTx 在肿瘤实际中积聚,并通过低频超声(LFUS)显现出来。反过来,低频超声诱导的惯性空化又会促进纳米微滴碎片上的 mPD1 穿透肿瘤,mPD1 与 PDL1 共价结合,启动溶酶体降解过程。通过体外和体内研究,证实了 NDsmTx 在降解 PDL1 和增强抗肿瘤免疫力方面的卓越性能。总之,NDsmTx 是肿瘤免疫疗法中现有 PDL1 阻断剂的替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1