Modeling the effect of external load variations on single, serie and parallel connected microbial fuel cells

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-11-06 DOI:10.1016/j.biortech.2024.131761
S. Potrykus , J. Nieznański , F. Kutt , F.J. Fernandez-Morales
{"title":"Modeling the effect of external load variations on single, serie and parallel connected microbial fuel cells","authors":"S. Potrykus ,&nbsp;J. Nieznański ,&nbsp;F. Kutt ,&nbsp;F.J. Fernandez-Morales","doi":"10.1016/j.biortech.2024.131761","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a microbial fuel cell (MFC) model designed to analyze the effect of the external load on MFC performance. The model takes into account the voltage and the chemical oxygen demand (COD) dependence on the external load. The value of the model parameters were calibrated by means of the voltage relaxation method tests using a controlled load current. Laboratory measurements and MATLAB Simulink model computations were used to validate the proposed model. The tests results demonstrated that the proposed model accurately predicts the voltage and COD evolution during the batch cycle of the MFC. The root mean square error (RMSE) was used to assess the fitting goodness of the model. The RMSE of COD and voltage generation was in all the cases lower than 4%, predicting accurately the behaviour of single MFC as well as MFC connected in series or parallel.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"416 ","pages":"Article 131761"},"PeriodicalIF":9.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424014652","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a microbial fuel cell (MFC) model designed to analyze the effect of the external load on MFC performance. The model takes into account the voltage and the chemical oxygen demand (COD) dependence on the external load. The value of the model parameters were calibrated by means of the voltage relaxation method tests using a controlled load current. Laboratory measurements and MATLAB Simulink model computations were used to validate the proposed model. The tests results demonstrated that the proposed model accurately predicts the voltage and COD evolution during the batch cycle of the MFC. The root mean square error (RMSE) was used to assess the fitting goodness of the model. The RMSE of COD and voltage generation was in all the cases lower than 4%, predicting accurately the behaviour of single MFC as well as MFC connected in series or parallel.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟外部负载变化对单个、串联和并联微生物燃料电池的影响。
本文介绍了一种微生物燃料电池(MFC)模型,旨在分析外部负载对 MFC 性能的影响。该模型考虑了电压和化学需氧量(COD)对外部负载的依赖性。模型参数值通过使用受控负载电流的电压松弛法测试进行校准。实验室测量和 MATLAB Simulink 模型计算用于验证所提出的模型。测试结果表明,所提出的模型能够准确预测 MFC 批次循环期间的电压和 COD 变化。均方根误差(RMSE)用于评估模型的拟合程度。在所有情况下,化学需氧量和电压生成的均方根误差都低于 4%,能够准确预测单个 MFC 以及串联或并联 MFC 的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Biodiesel production, calcium recovery, and adsorbent synthesis using dairy sludge. Improved biohydrogen production using Ni/ZrxCeyO2 loaded on foam reactor through steam gasification of sewage sludge. Selective phthalate removal by molecularly imprinted biomass carbon modified electro-Fenton cathode. Pretreated sugarcane bagasse matches performance of synthetic media for lipid production with Yarrowia lipolytica. Exploiting synergy of dopamine and stressful conditions in enhancing Haematococcus lacustris biomass and astaxanthin yield
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1