Fabrice Camilleri, Joanna M Wenda, Claire Pecoraro-Mercier, Jean-Paul Comet, David Rouquié
{"title":"Cell Painting and Chemical Structure Read-Across Can Complement Each Other for Rat Acute Oral Toxicity Prediction in Chemical Early Derisking.","authors":"Fabrice Camilleri, Joanna M Wenda, Claire Pecoraro-Mercier, Jean-Paul Comet, David Rouquié","doi":"10.1021/acs.chemrestox.4c00169","DOIUrl":null,"url":null,"abstract":"<p><p>Early derisking decisions in the development of new chemical compounds enable the identification of novel chemical candidates with improved safety profiles. In vivo studies are traditionally conducted in the early assessment of acute oral toxicity of crop protection products to avoid compounds, which are considered \"very acutely toxic\", with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight. Those studies are lengthy and costly and raise ethical concerns, catalyzing the use of nonanimal alternatives. The objective of our analysis was to assess the predictive efficacy of read-across approaches for acute oral toxicity in rats, comparing the use of chemical structure information, in vitro biological data derived from the Cell Painting profiling assay on U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of 0.85).</p>","PeriodicalId":31,"journal":{"name":"Chemical Research in Toxicology","volume":" ","pages":"1851-1866"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Research in Toxicology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemrestox.4c00169","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Early derisking decisions in the development of new chemical compounds enable the identification of novel chemical candidates with improved safety profiles. In vivo studies are traditionally conducted in the early assessment of acute oral toxicity of crop protection products to avoid compounds, which are considered "very acutely toxic", with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight. Those studies are lengthy and costly and raise ethical concerns, catalyzing the use of nonanimal alternatives. The objective of our analysis was to assess the predictive efficacy of read-across approaches for acute oral toxicity in rats, comparing the use of chemical structure information, in vitro biological data derived from the Cell Painting profiling assay on U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of 0.85).
期刊介绍:
Chemical Research in Toxicology publishes Articles, Rapid Reports, Chemical Profiles, Reviews, Perspectives, Letters to the Editor, and ToxWatch on a wide range of topics in Toxicology that inform a chemical and molecular understanding and capacity to predict biological outcomes on the basis of structures and processes. The overarching goal of activities reported in the Journal are to provide knowledge and innovative approaches needed to promote intelligent solutions for human safety and ecosystem preservation. The journal emphasizes insight concerning mechanisms of toxicity over phenomenological observations. It upholds rigorous chemical, physical and mathematical standards for characterization and application of modern techniques.