Electrical Microneedles for Wound Treatment.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-08 DOI:10.1002/advs.202409519
Yu Wang, Lijun Cai, Lu Fan, Li Wang, Feika Bian, Weijian Sun, Yuanjin Zhao
{"title":"Electrical Microneedles for Wound Treatment.","authors":"Yu Wang, Lijun Cai, Lu Fan, Li Wang, Feika Bian, Weijian Sun, Yuanjin Zhao","doi":"10.1002/advs.202409519","DOIUrl":null,"url":null,"abstract":"<p><p>Electrical stimulation has been hotpot research and provoked extensive interest in a broad application such as wound closure, tissue injury repair, and nerve engineering. In particular, immense efforts have been dedicated to developing electrical microneedles, which demonstrate unique features in terms of controllable drug release, real-time monitoring, and therapy, thus greatly accelerating the process of wound healing. Here, a review of state-of-art research concerning electrical microneedles applied for wound treatment is presented. After a comprehensive analysis of the mechanisms of electrical stimulation on wound healing, the derived three types of electrical microneedles are clarified and summarized. Further, their applications in wound healing are highlighted. Finally, current perspectives and directions for the development of future electrical microneedles in improving wound healing are addressed.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202409519","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical stimulation has been hotpot research and provoked extensive interest in a broad application such as wound closure, tissue injury repair, and nerve engineering. In particular, immense efforts have been dedicated to developing electrical microneedles, which demonstrate unique features in terms of controllable drug release, real-time monitoring, and therapy, thus greatly accelerating the process of wound healing. Here, a review of state-of-art research concerning electrical microneedles applied for wound treatment is presented. After a comprehensive analysis of the mechanisms of electrical stimulation on wound healing, the derived three types of electrical microneedles are clarified and summarized. Further, their applications in wound healing are highlighted. Finally, current perspectives and directions for the development of future electrical microneedles in improving wound healing are addressed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于伤口治疗的电微针。
电刺激一直是研究热点,并在伤口闭合、组织损伤修复和神经工程等广泛应用中引发了广泛兴趣。尤其是电刺激微针,在可控药物释放、实时监测和治疗方面表现出独特的功能,从而大大加快了伤口愈合的进程。本文综述了应用于伤口治疗的电微针的最新研究进展。在全面分析了电刺激对伤口愈合的作用机制后,阐明并总结了衍生的三种电微针。此外,还重点介绍了它们在伤口愈合中的应用。最后,论述了在改善伤口愈合方面未来电微针的发展前景和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
1,8-Diazabicyclo[5.4.0]undec-7-ene as Cyclic Ether Electrolyte Polymerization Inhibition for Wide-Temperature-Range High-Rate Lithium-ion Batteries. Correction to "Metal-Free and Open-Air Arylation Reactions of Diaryliodonium Salts for DNA-Encoded Library Synthesis". Electric Field Cycling of Physisorbed Antibodies Reduces Biolayer Polarization Dispersion. Electrical Microneedles for Wound Treatment. Fenton-Inactive Cd Enables Highly Selective O2-Derived Domino Reaction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1