{"title":"The development of supplemental multimedia learning modules and their impact on student learning in food biotechnology courses.","authors":"Jiangyu Zhu, Zhengfei Yang, Yongqi Yin, Weiming Fang","doi":"10.1002/bmb.21867","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid growth of online education has created opportunities to integrate multimedia learning tools into complex scientific disciplines like food biotechnology. This study aimed to develop and evaluate supplementary online course modules on gene expression analysis, protein engineering tools, and fermentation genomics for undergraduate food biotechnology education. Based on cognitive load theory and multimedia learning principles, the modules incorporated focused visual media and interactive knowledge checks. The study involved 85 students in an introductory food microbiology course and 25 students in an upper-level food biochemistry elective at a large public university. Module implementation included tracking student usage through learning management system analytics, collecting qualitative feedback, and assessing learning outcomes via exam performance. Results showed that 73%-76% of students voluntarily accessed the modules, with average engagement times of 5-8 min per module. Student feedback highlighted the modules' effectiveness in clarifying textbook content through replayable examples and real-world scenarios. Comparison of exam scores revealed a 6%-10% improvement in performance on module-related items compared to overall exam averages. Qualitative feedback indicated that students found the visual representations and interactive elements helpful for clarifying complex concepts. This study demonstrates the potential of well-designed multimedia modules to support student learning in food biotechnology education, providing a model for expanding such resources in food science curricula.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21867","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of online education has created opportunities to integrate multimedia learning tools into complex scientific disciplines like food biotechnology. This study aimed to develop and evaluate supplementary online course modules on gene expression analysis, protein engineering tools, and fermentation genomics for undergraduate food biotechnology education. Based on cognitive load theory and multimedia learning principles, the modules incorporated focused visual media and interactive knowledge checks. The study involved 85 students in an introductory food microbiology course and 25 students in an upper-level food biochemistry elective at a large public university. Module implementation included tracking student usage through learning management system analytics, collecting qualitative feedback, and assessing learning outcomes via exam performance. Results showed that 73%-76% of students voluntarily accessed the modules, with average engagement times of 5-8 min per module. Student feedback highlighted the modules' effectiveness in clarifying textbook content through replayable examples and real-world scenarios. Comparison of exam scores revealed a 6%-10% improvement in performance on module-related items compared to overall exam averages. Qualitative feedback indicated that students found the visual representations and interactive elements helpful for clarifying complex concepts. This study demonstrates the potential of well-designed multimedia modules to support student learning in food biotechnology education, providing a model for expanding such resources in food science curricula.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.