{"title":"Global changes in the pattern of connectivity in developmental prosopagnosia.","authors":"Gabriela Epihova, Richard Cook, Timothy J Andrews","doi":"10.1093/cercor/bhae435","DOIUrl":null,"url":null,"abstract":"<p><p>Developmental prosopagnosia is a neurodevelopmental condition characterized by difficulties in recognizing the identity of a person from their face. While current theories of the neural basis of developmental prosopagnosia focus on the face processing network, successful recognition of face identities requires broader integration of neural signals across the whole brain. Here, we asked whether disruptions in global functional and structural connectivity contribute to the face recognition difficulties observed in developmental prosopagnosia. We found that the left temporal pole was less functionally connected to the rest of the brain in developmental prosopagnosia. This was driven by weaker contralateral connections to the middle and inferior temporal gyri, as well as to the medial prefrontal cortex. The pattern of global connectivity in the left temporal pole was also disrupted in developmental prosopagnosia. Critically, these changes in global functional connectivity were only evident when participants viewed faces. Structural connectivity analysis revealed localized reductions in connectivity between the left temporal pole and a number of regions, including the fusiform gyrus, inferior temporal gyrus, and orbitofrontal cortex. Our findings underscore the importance of whole-brain integration in supporting typical face recognition and provide evidence that disruptions in connectivity involving the left temporal pole may underlie the characteristic difficulties of developmental prosopagnosia.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"34 11","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546179/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhae435","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developmental prosopagnosia is a neurodevelopmental condition characterized by difficulties in recognizing the identity of a person from their face. While current theories of the neural basis of developmental prosopagnosia focus on the face processing network, successful recognition of face identities requires broader integration of neural signals across the whole brain. Here, we asked whether disruptions in global functional and structural connectivity contribute to the face recognition difficulties observed in developmental prosopagnosia. We found that the left temporal pole was less functionally connected to the rest of the brain in developmental prosopagnosia. This was driven by weaker contralateral connections to the middle and inferior temporal gyri, as well as to the medial prefrontal cortex. The pattern of global connectivity in the left temporal pole was also disrupted in developmental prosopagnosia. Critically, these changes in global functional connectivity were only evident when participants viewed faces. Structural connectivity analysis revealed localized reductions in connectivity between the left temporal pole and a number of regions, including the fusiform gyrus, inferior temporal gyrus, and orbitofrontal cortex. Our findings underscore the importance of whole-brain integration in supporting typical face recognition and provide evidence that disruptions in connectivity involving the left temporal pole may underlie the characteristic difficulties of developmental prosopagnosia.
期刊介绍:
Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included.
The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.