{"title":"Cyclophilin A: promising target in cancer therapy.","authors":"Shujuan Jin, Mengjiao Zhang, Xiaoting Qiao","doi":"10.1080/15384047.2024.2425127","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its <i>peptidyl-prolyl cis-trans isomerase</i> (<i>PPIase</i>) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"25 1","pages":"2425127"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/15384047.2024.2425127","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclophilin A (CypA), a member of the immunophilin family, stands out as the most prevalent among the cyclophilins found in humans. Beyond serving as the intracellular receptor for the immunosuppressive drug cyclosporine A (CsA), CypA exerts critical functions within the cell via its peptidyl-prolyl cis-trans isomerase (PPIase) activity, which is crucial for processes, such as protein folding, trafficking, assembly, modulation of immune responses, and cell signaling. Increasing evidence indicates that CypA is up-regulated in a variety of human cancers and it may be a novel potential therapeutic target for cancer treatment. Therefore, gaining a thorough understanding of CypA's contribution to cancer could yield fresh perspectives and inform the development of innovative therapeutic approaches. This review delves into the multifaceted roles of CypA in cancer biology and explores the therapeutic potential of targeting CypA.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.