How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model
Marvin Leopold , Paola Berenice Mass-Sanchez , Marinela Krizanac , Paula Štancl , Rosa Karlić , Patricia Prabutzki , Victoria Parafianczuk , Jürgen Schiller , Anastasia Asimakopoulos , Kathrin M. Engel , Ralf Weiskirchen
{"title":"How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model","authors":"Marvin Leopold , Paola Berenice Mass-Sanchez , Marinela Krizanac , Paula Štancl , Rosa Karlić , Patricia Prabutzki , Victoria Parafianczuk , Jürgen Schiller , Anastasia Asimakopoulos , Kathrin M. Engel , Ralf Weiskirchen","doi":"10.1016/j.bbalip.2024.159574","DOIUrl":null,"url":null,"abstract":"<div><div>The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 1","pages":"Article 159574"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198124001240","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.