Firas Warda, Jennifer Batch, Lauren Graham, Michael J. Haas, Arshag D. Mooradian
{"title":"D-allulose enhances lipid oxidation in HepG2 cells via peroxisome proliferator-activated receptor α (PPARα)","authors":"Firas Warda, Jennifer Batch, Lauren Graham, Michael J. Haas, Arshag D. Mooradian","doi":"10.1016/j.bbalip.2025.159599","DOIUrl":null,"url":null,"abstract":"<div><div>Lipid accumulation in hepatocytes in non-alcoholic steatohepatitis (NASH) is attributed partly to loss of insulin-responsiveness and/or an increased pro-inflammatory state. Since the rare sugar D-allulose has insulin mimetic and anti-inflammatory properties, its effects on lipid accumulation in liver-derived cells was tested. In HepG2 cells exposed to 200 μM oleic acid for 72 h, D-allulose treatment decreased intracellular lipid accumulation with an IC<sub>50</sub> = 0.45 ± 0.07 mM. A similar effect was observed in cells treated with 10 μM gemfibrozil. D-allulose and gemfibrozil treatment increased oleic acid β-oxidation. Both D-allulose and gemfibrozil increased peroxisome proliferator-activated receptor α (PPARα) expression (two-fold) relative to control cells, while retinoid X receptor was unchanged. D-allulose and gemfibrozil increased PPARα-dependent genes including those involved in fatty acid β-oxidation (acyl-coenzyme A oxidase 1, long-chain-fatty-acid-coenzyme A ligase 5, and carnitine palmitoyltransferase 1 A). D-allulose and gemfibrozil also increased PPARα reporter gene expression and phosphorylation (Serine 12) which were both inhibited by the mitogen-activated protein (MAP) kinase inhibitor PD098059. Other MAP kinase inhibitors, including SB203580, SP600125, and BIX10289 had no effect on reporter gene expression. Oleic acid treatment, but not D-allulose or gemfibrozil, decreased sterol response element binding protein 1 and sterol response element binding protein 2 expression relative to cells not exposed to oleic acid, while peroxisome proliferator-activated receptor γ expression did not change. These results indicate that D-alluose mimics gemfibrozil effects on lipid content in HepG2 cells by promoting fatty acid β-oxidation via PPARα.</div></div>","PeriodicalId":8815,"journal":{"name":"Biochimica et biophysica acta. Molecular and cell biology of lipids","volume":"1870 3","pages":"Article 159599"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. Molecular and cell biology of lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388198125000071","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid accumulation in hepatocytes in non-alcoholic steatohepatitis (NASH) is attributed partly to loss of insulin-responsiveness and/or an increased pro-inflammatory state. Since the rare sugar D-allulose has insulin mimetic and anti-inflammatory properties, its effects on lipid accumulation in liver-derived cells was tested. In HepG2 cells exposed to 200 μM oleic acid for 72 h, D-allulose treatment decreased intracellular lipid accumulation with an IC50 = 0.45 ± 0.07 mM. A similar effect was observed in cells treated with 10 μM gemfibrozil. D-allulose and gemfibrozil treatment increased oleic acid β-oxidation. Both D-allulose and gemfibrozil increased peroxisome proliferator-activated receptor α (PPARα) expression (two-fold) relative to control cells, while retinoid X receptor was unchanged. D-allulose and gemfibrozil increased PPARα-dependent genes including those involved in fatty acid β-oxidation (acyl-coenzyme A oxidase 1, long-chain-fatty-acid-coenzyme A ligase 5, and carnitine palmitoyltransferase 1 A). D-allulose and gemfibrozil also increased PPARα reporter gene expression and phosphorylation (Serine 12) which were both inhibited by the mitogen-activated protein (MAP) kinase inhibitor PD098059. Other MAP kinase inhibitors, including SB203580, SP600125, and BIX10289 had no effect on reporter gene expression. Oleic acid treatment, but not D-allulose or gemfibrozil, decreased sterol response element binding protein 1 and sterol response element binding protein 2 expression relative to cells not exposed to oleic acid, while peroxisome proliferator-activated receptor γ expression did not change. These results indicate that D-alluose mimics gemfibrozil effects on lipid content in HepG2 cells by promoting fatty acid β-oxidation via PPARα.
期刊介绍:
BBA Molecular and Cell Biology of Lipids publishes papers on original research dealing with novel aspects of molecular genetics related to the lipidome, the biosynthesis of lipids, the role of lipids in cells and whole organisms, the regulation of lipid metabolism and function, and lipidomics in all organisms. Manuscripts should significantly advance the understanding of the molecular mechanisms underlying biological processes in which lipids are involved. Papers detailing novel methodology must report significant biochemical, molecular, or functional insight in the area of lipids.