{"title":"SpaDiT: diffusion transformer for spatial gene expression prediction using scRNA-seq.","authors":"Xiaoyu Li, Fangfang Zhu, Wenwen Min","doi":"10.1093/bib/bbae571","DOIUrl":null,"url":null,"abstract":"<p><p>The rapid development of spatially resolved transcriptomics (SRT) technologies has provided unprecedented opportunities for exploring the structure of specific organs or tissues. However, these techniques (such as image-based SRT) can achieve single-cell resolution, but can only capture the expression levels of tens to hundreds of genes. Such spatial transcriptomics (ST) data, carrying a large number of undetected genes, have limited its application value. To address the challenge, we develop SpaDiT, a deep learning framework for spatial reconstruction and gene expression prediction using scRNA-seq data. SpaDiT employs scRNA-seq data as an a priori condition and utilizes shared genes between ST and scRNA-seq data as latent representations to construct inputs, thereby facilitating the accurate prediction of gene expression in ST data. SpaDiT enhances the accuracy of spatial gene expression predictions over a variety of spatial transcriptomics datasets. We have demonstrated the effectiveness of SpaDiT by conducting extensive experiments on both seq-based and image-based ST data. We compared SpaDiT with eight highly effective baseline methods and found that our proposed method achieved an 8%-12% improvement in performance across multiple metrics. Source code and all datasets used in this paper are available at https://github.com/wenwenmin/SpaDiT and https://zenodo.org/records/12792074.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"25 6","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbae571","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of spatially resolved transcriptomics (SRT) technologies has provided unprecedented opportunities for exploring the structure of specific organs or tissues. However, these techniques (such as image-based SRT) can achieve single-cell resolution, but can only capture the expression levels of tens to hundreds of genes. Such spatial transcriptomics (ST) data, carrying a large number of undetected genes, have limited its application value. To address the challenge, we develop SpaDiT, a deep learning framework for spatial reconstruction and gene expression prediction using scRNA-seq data. SpaDiT employs scRNA-seq data as an a priori condition and utilizes shared genes between ST and scRNA-seq data as latent representations to construct inputs, thereby facilitating the accurate prediction of gene expression in ST data. SpaDiT enhances the accuracy of spatial gene expression predictions over a variety of spatial transcriptomics datasets. We have demonstrated the effectiveness of SpaDiT by conducting extensive experiments on both seq-based and image-based ST data. We compared SpaDiT with eight highly effective baseline methods and found that our proposed method achieved an 8%-12% improvement in performance across multiple metrics. Source code and all datasets used in this paper are available at https://github.com/wenwenmin/SpaDiT and https://zenodo.org/records/12792074.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.