Comparison of Computational Statistical Packages for the Analysis of Continuous Glucose Monitoring Data with a Reference Software, "Ambulatory Glucose Profile," in Type 1 Diabetes.
Kagan E Karakus, Janet K Snell-Bergeon, Halis K Akturk
{"title":"Comparison of Computational Statistical Packages for the Analysis of Continuous Glucose Monitoring Data with a Reference Software, \"Ambulatory Glucose Profile,\" in Type 1 Diabetes.","authors":"Kagan E Karakus, Janet K Snell-Bergeon, Halis K Akturk","doi":"10.1089/dia.2024.0410","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Objective:</i></b> To compare the accuracy of commonly used continuous glucose monitoring (CGM) analysis programs with ambulatory glucose profile (AGP) and Dexcom Clarity (DC) in analyzing CGM metrics in patients with type 1 diabetes (T1D). <b><i>Research Methods:</i></b> CGM data up to 90 days from 152 adults using the same CGM and automated insulin delivery system with T1D were collected. Six of the 19 CGM analysis programs (CDGA, cgmanalysis, Glyculator, iglu, EasyGV, and GLU) were selected to compare with AGP and DC. Metrics were compared etween all tools with two one-sided <i>t</i>-tests equivalence testing. For the equivalence test, the acceptable range of deviation was set as ±2 mg/dL for mean glucose, ±2% for time in range (TIR), ±1% for time above range (TAR), time above range level 1 (TAR1), time above range level 2 (TAR2), and coefficient of variation (CV). <b><i>Results:</i></b> All packages were compared with each other for all CGM metrics, and most of them had statistically significant differences for at least some metrics. All tools were equivalent to AGP for mean glucose, TIR, TAR, TAR1, and TAR2 within ±2 mg/dL, ±2%, ±1%, ±1% and 1%, respectively. CDGA, Glyculator, cgmanalysis, and iglu were not equivalent to AGP for CV within ±1%. All tools were equivalent to DC for mean glucose, TIR, and TAR2 within ±2 mg/dL, ±2%, and ±1%, respectively. Glyculator was not equivalent for TAR1, TAR, and CV. CGDA, cgmanalysis, and iglu were not equivalent to DC for TAR1 and TAR. EasyGV and GLU were not equivalent for TAR within ±1%. <b><i>Conclusions:</i></b> CGM analysis programs reported CGM metrics statistically differently, but these differences may not be applicable in clinical practice. The equivalence test also confirmed that the differences are negligible for TIR and mean glucose, while they can be important for hyperglycemic ranges and CV. A standardization for CGM data handling and analysis is necessary for clinical studies reporting CGM-generated outcomes.</p>","PeriodicalId":11159,"journal":{"name":"Diabetes technology & therapeutics","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetes technology & therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/dia.2024.0410","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: To compare the accuracy of commonly used continuous glucose monitoring (CGM) analysis programs with ambulatory glucose profile (AGP) and Dexcom Clarity (DC) in analyzing CGM metrics in patients with type 1 diabetes (T1D). Research Methods: CGM data up to 90 days from 152 adults using the same CGM and automated insulin delivery system with T1D were collected. Six of the 19 CGM analysis programs (CDGA, cgmanalysis, Glyculator, iglu, EasyGV, and GLU) were selected to compare with AGP and DC. Metrics were compared etween all tools with two one-sided t-tests equivalence testing. For the equivalence test, the acceptable range of deviation was set as ±2 mg/dL for mean glucose, ±2% for time in range (TIR), ±1% for time above range (TAR), time above range level 1 (TAR1), time above range level 2 (TAR2), and coefficient of variation (CV). Results: All packages were compared with each other for all CGM metrics, and most of them had statistically significant differences for at least some metrics. All tools were equivalent to AGP for mean glucose, TIR, TAR, TAR1, and TAR2 within ±2 mg/dL, ±2%, ±1%, ±1% and 1%, respectively. CDGA, Glyculator, cgmanalysis, and iglu were not equivalent to AGP for CV within ±1%. All tools were equivalent to DC for mean glucose, TIR, and TAR2 within ±2 mg/dL, ±2%, and ±1%, respectively. Glyculator was not equivalent for TAR1, TAR, and CV. CGDA, cgmanalysis, and iglu were not equivalent to DC for TAR1 and TAR. EasyGV and GLU were not equivalent for TAR within ±1%. Conclusions: CGM analysis programs reported CGM metrics statistically differently, but these differences may not be applicable in clinical practice. The equivalence test also confirmed that the differences are negligible for TIR and mean glucose, while they can be important for hyperglycemic ranges and CV. A standardization for CGM data handling and analysis is necessary for clinical studies reporting CGM-generated outcomes.
期刊介绍:
Diabetes Technology & Therapeutics is the only peer-reviewed journal providing healthcare professionals with information on new devices, drugs, drug delivery systems, and software for managing patients with diabetes. This leading international journal delivers practical information and comprehensive coverage of cutting-edge technologies and therapeutics in the field, and each issue highlights new pharmacological and device developments to optimize patient care.