Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias.

IF 14.7 1区 医学 Q1 NEUROSCIENCES Neuron Pub Date : 2024-11-05 DOI:10.1016/j.neuron.2024.10.013
Chang-Ki Oh, Tomohiro Nakamura, Xu Zhang, Stuart A Lipton
{"title":"Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias.","authors":"Chang-Ki Oh, Tomohiro Nakamura, Xu Zhang, Stuart A Lipton","doi":"10.1016/j.neuron.2024.10.013","DOIUrl":null,"url":null,"abstract":"<p><p>Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.10.013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化还原调节、蛋白质 S-亚硝基化和阿尔茨海默氏症及相关痴呆症的突触丧失。
以蛋白质 S-亚硝基化为例,氧化还原介导的翻译后修饰可调节蛋白质在健康和疾病中的活性和功能。在此,我们回顾了最近的研究结果,这些结果表明,正常衰老、感染/炎症、创伤、环境毒素以及与蛋白质聚集相关的疾病都会引发过度的亚硝基应激,导致蛋白质 S-亚硝基化异常,进而导致蛋白质网络功能失调。这些氧化还原反应是多种神经退行性疾病和全身性疾病的病因。在中枢神经系统中,单个蛋白质或在许多情况下相互关联的蛋白质网络的异常 S-亚硝基化反应会导致影响内质网(ER)应激、炎症信号传导、自噬/半自噬、泛素-蛋白酶体系统、转录和酶机制以及线粒体代谢的功能障碍途径。异常的蛋白质 S-亚硝基化和反硝基化(一氧化氮相关物质从一种蛋白质转移到另一种蛋白质)会引发蛋白质聚集、神经元生物能受损和小胶质细胞吞噬作用,所有这些都会导致突触丧失,而突触丧失正是阿尔茨海默病和相关痴呆症认知能力下降的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuron
Neuron 医学-神经科学
CiteScore
24.50
自引率
3.10%
发文量
382
审稿时长
1 months
期刊介绍: Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.
期刊最新文献
A fast and responsive voltage indicator with enhanced sensitivity for unitary synaptic events. An amygdalar oscillator coordinates cellular and behavioral rhythms. Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Offline hippocampal reactivation during dentate spikes supports flexible memory. The sodium-bicarbonate cotransporter Slc4a5 mediates feedback at the first synapse of vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1