Lucas Sobral de Rossi, Raquel Pires Nakama, Lucas Felipe Dos Santos, Leonardo Berto-Pereira, Aparecida Donizette Malvezi, Maria Isabel Lovo-Martins, Ana Paula Canizares Cardoso, Luiz Claúdio Tozoni-Filho, Eduardo Inocente Jussiani, Andressa Mendes Dionísio de Freitas, Marli Cardoso Martins-Pinge, Phileno Pinge-Filho
{"title":"Metabolic syndrome promotes resistance to aspirin in mitigating bone loss in murine periodontal disease.","authors":"Lucas Sobral de Rossi, Raquel Pires Nakama, Lucas Felipe Dos Santos, Leonardo Berto-Pereira, Aparecida Donizette Malvezi, Maria Isabel Lovo-Martins, Ana Paula Canizares Cardoso, Luiz Claúdio Tozoni-Filho, Eduardo Inocente Jussiani, Andressa Mendes Dionísio de Freitas, Marli Cardoso Martins-Pinge, Phileno Pinge-Filho","doi":"10.1016/j.lfs.2024.123224","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>This study aimed to investigate the protective effects of aspirin (ASA) on alveolar bone loss in a mouse model with metabolic syndrome (MetS) and concurrent periodontal disease (PD). Specifically, the study sought to determine whether ASA could mitigate bone loss in MetS and non-MetS animals with PD and explore the correlation between gingival nitric oxide (NO) levels and bone resorption.</p><p><strong>Main methods: </strong>Newborn female Swiss mice were administered monosodium glutamate (MSG) (4 mg/g) during the initial 5 days of life to induce MetS (MetS group), while the control group (SAL) was administered saline. On the 60th day, PD was induced in both groups. Half of the animals were treated daily with ASA (40 mg/kg). MetS was characterized by the Lee index, blood glucose, and cardiovascular parameters. Maxillae were evaluated by microtomography and histopathology, showing significant bone loss after PD induction.</p><p><strong>Key findings: </strong>Animals with MetS exhibited higher alveolar bone loss than controls. SAL animals treated with ASA had less bone loss than their MetS counterparts. Gingival NO levels were elevated in animals with PD, and a strong correlation was found between NO levels and bone resorption. ASA reduced NO in non-MetS animals, but MetS animals were resistant to this effect.</p><p><strong>Significance: </strong>These findings suggest a protective mechanism of ASA against bone loss in non-MetS animals with PD, an effect that was not observed in MetS animals. Consequently, this study provides novel insights into the intricate relationship between MetS and PD in mice.</p>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.lfs.2024.123224","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: This study aimed to investigate the protective effects of aspirin (ASA) on alveolar bone loss in a mouse model with metabolic syndrome (MetS) and concurrent periodontal disease (PD). Specifically, the study sought to determine whether ASA could mitigate bone loss in MetS and non-MetS animals with PD and explore the correlation between gingival nitric oxide (NO) levels and bone resorption.
Main methods: Newborn female Swiss mice were administered monosodium glutamate (MSG) (4 mg/g) during the initial 5 days of life to induce MetS (MetS group), while the control group (SAL) was administered saline. On the 60th day, PD was induced in both groups. Half of the animals were treated daily with ASA (40 mg/kg). MetS was characterized by the Lee index, blood glucose, and cardiovascular parameters. Maxillae were evaluated by microtomography and histopathology, showing significant bone loss after PD induction.
Key findings: Animals with MetS exhibited higher alveolar bone loss than controls. SAL animals treated with ASA had less bone loss than their MetS counterparts. Gingival NO levels were elevated in animals with PD, and a strong correlation was found between NO levels and bone resorption. ASA reduced NO in non-MetS animals, but MetS animals were resistant to this effect.
Significance: These findings suggest a protective mechanism of ASA against bone loss in non-MetS animals with PD, an effect that was not observed in MetS animals. Consequently, this study provides novel insights into the intricate relationship between MetS and PD in mice.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.