Federica Comella, Alana Aragón-Herrera, Claudio Pirozzi, Sandra Feijóo-Bandin, Adriano Lama, Nicola Opallo, Stefania Melini, Filomena Del Piano, Oreste Gualillo, Rosaria Meli, Giuseppina Mattace Raso, Francisca Lago
{"title":"Oleoylethanolamide mitigates cardiometabolic disruption secondary to obesity induced by high-fat diet in mice.","authors":"Federica Comella, Alana Aragón-Herrera, Claudio Pirozzi, Sandra Feijóo-Bandin, Adriano Lama, Nicola Opallo, Stefania Melini, Filomena Del Piano, Oreste Gualillo, Rosaria Meli, Giuseppina Mattace Raso, Francisca Lago","doi":"10.1016/j.lfs.2024.123226","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic lipid overnutrition has been demonstrated to promote cardiac dysfunction resulting from metabolic derangement, inflammation, and fibrosis. Oleoylethanolamide (OEA), an endogenous peroxisome proliferator activating receptor (PPAR)-α agonist, has been extensively studied for its metabolic properties. The aim of this study was to determine if OEA has beneficial effects on high-fat diet (HFD)-induced cardiac disruption in obese mice, focusing on the underlying pathological mechanisms. OEA treatment restores the metabolic pattern, improving serum glycaemic and lipid profile. OEA also reduces heart weight and serum creatine kinase-myocardial band (CK-MB), a marker of cardiac damage. Accordingly, OEA modulates cardiac metabolism, increasing insulin signaling and reducing lipid accumulation. OEA increases AMPK and AKT phosphorylation, converging in the rise of AS160 activation and glucose transporter (GLUT)4 protein level. Moreover, OEA reduces the transcription of the cardiac fatty acid transporter CD36 and fatty acid synthase and increases PPAR-α mRNA levels. Adiponectin and meteorite-like protein transcription levels were significantly reduced by OEA in HFD mice, as well as those of inflammatory cytokines and pro-fibrotic markers. An increased autophagic process was also shown, contributing to OEA's cardioprotective effects. Metabolomic analyses of cardiac tissue revealed the modulation of different lipids, including triglycerides, glycerophospholipids and sphingomyelins by OEA treatment. In vitro experiments on HL-1 cardiomyocytes showed OEA's capability in reducing inflammation and fibrosis following palmitate challenge, demonstrating a direct activity of OEA on cardiac cells, mainly mediated by PPAR-α activation. Our results indicate OEA as a potential therapeutic to restrain cardiac damage associated with metabolic disorders.</p>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.lfs.2024.123226","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic lipid overnutrition has been demonstrated to promote cardiac dysfunction resulting from metabolic derangement, inflammation, and fibrosis. Oleoylethanolamide (OEA), an endogenous peroxisome proliferator activating receptor (PPAR)-α agonist, has been extensively studied for its metabolic properties. The aim of this study was to determine if OEA has beneficial effects on high-fat diet (HFD)-induced cardiac disruption in obese mice, focusing on the underlying pathological mechanisms. OEA treatment restores the metabolic pattern, improving serum glycaemic and lipid profile. OEA also reduces heart weight and serum creatine kinase-myocardial band (CK-MB), a marker of cardiac damage. Accordingly, OEA modulates cardiac metabolism, increasing insulin signaling and reducing lipid accumulation. OEA increases AMPK and AKT phosphorylation, converging in the rise of AS160 activation and glucose transporter (GLUT)4 protein level. Moreover, OEA reduces the transcription of the cardiac fatty acid transporter CD36 and fatty acid synthase and increases PPAR-α mRNA levels. Adiponectin and meteorite-like protein transcription levels were significantly reduced by OEA in HFD mice, as well as those of inflammatory cytokines and pro-fibrotic markers. An increased autophagic process was also shown, contributing to OEA's cardioprotective effects. Metabolomic analyses of cardiac tissue revealed the modulation of different lipids, including triglycerides, glycerophospholipids and sphingomyelins by OEA treatment. In vitro experiments on HL-1 cardiomyocytes showed OEA's capability in reducing inflammation and fibrosis following palmitate challenge, demonstrating a direct activity of OEA on cardiac cells, mainly mediated by PPAR-α activation. Our results indicate OEA as a potential therapeutic to restrain cardiac damage associated with metabolic disorders.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.