An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges-A Case Study of PFAS Detection in River Water.
Rosalba Pitruzzella, Alessandro Chiodi, Riccardo Rovida, Francesco Arcadio, Giovanni Porto, Simone Moretti, Gianfranco Brambilla, Luigi Zeni, Nunzio Cennamo
{"title":"An MIP-Based PFAS Sensor Exploiting Nanolayers on Plastic Optical Fibers for Ultra-Wide and Ultra-Low Detection Ranges-A Case Study of PFAS Detection in River Water.","authors":"Rosalba Pitruzzella, Alessandro Chiodi, Riccardo Rovida, Francesco Arcadio, Giovanni Porto, Simone Moretti, Gianfranco Brambilla, Luigi Zeni, Nunzio Cennamo","doi":"10.3390/nano14211764","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, a novel optical-chemical sensor for the detection of per- and polyfluorinated substances (PFASs) in a real scenario is presented. The proposed sensing approach exploits the multimode characteristics of plastic optical fibers (POFs) to achieve unconventional sensors via surface plasmon resonance (SPR) phenomena. The sensor is realized by the coupling of an SPR-POF platform with a novel chemical chip based on different polymeric nanolayers over the core of a D-shaped POF, one made up of an optical adhesive and one of a molecularly imprinted polymer (MIP) for PFAS. The chemical chip is used to launch the light into the SPR D-shaped POF platform, so the interaction between the analyte and the MIP's sites can be used to modulate the propagated light in the POFs and the SPR phenomena. Selectivity tests and dose-response curves by standard PFOA water solutions were carried out to characterize the detection range sensor response, obtaining a wide PFAS response range, from 1 ppt to 1000 ppt. Then, tests performed on river water samples collected from the Bormida river paved the way for the applicability of the proposed approach to a real scenario.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 21","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547922/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14211764","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, a novel optical-chemical sensor for the detection of per- and polyfluorinated substances (PFASs) in a real scenario is presented. The proposed sensing approach exploits the multimode characteristics of plastic optical fibers (POFs) to achieve unconventional sensors via surface plasmon resonance (SPR) phenomena. The sensor is realized by the coupling of an SPR-POF platform with a novel chemical chip based on different polymeric nanolayers over the core of a D-shaped POF, one made up of an optical adhesive and one of a molecularly imprinted polymer (MIP) for PFAS. The chemical chip is used to launch the light into the SPR D-shaped POF platform, so the interaction between the analyte and the MIP's sites can be used to modulate the propagated light in the POFs and the SPR phenomena. Selectivity tests and dose-response curves by standard PFOA water solutions were carried out to characterize the detection range sensor response, obtaining a wide PFAS response range, from 1 ppt to 1000 ppt. Then, tests performed on river water samples collected from the Bormida river paved the way for the applicability of the proposed approach to a real scenario.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.